Skip to main content
Log in

Laser Optoacoustic Method for Quantitative Estimation of Porosity in Cast Dispersion-Strengthened Metal-Matrix Composite Materials

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A laser optoacoustic method for quantitative assessment of the volumetric porosity of cast dispersion-strengthened metal-matrix composite materials has been proposed and experimentally implemented. The method is based on a statistical analysis of the distribution of amplitudes of backscattered broadband pulses of longitudinal acoustic waves in the tested materials. Laser excitation and piezoelectric recording of ultrasound is implemented with one-way access to the test object using a special laser-ultrasonic transducer. Silumin-based composites reinforced with silicon carbide microparticles in various volume concentrations (0.033–0.135) and composites obtained by reaction injection moulding based on aluminum reinforced with intermetallic \({\text{A}}{{{\text{l}}}_{3}}{\text{Ti}}\) (volume concentration 0.04–0.115) have been studied. For both types of composites, the distribution of amplitudes of backscattered ultrasonic signals is approximated by a Gaussian distribution function applicable for a large number of statistically independent quantities. The empirically obtained dependence of the half-width of this distribution on the volumetric porosity of composites of two different types is approximated by the same linear function regardless of the manufacturing technology, as well as of the type, size, and concentration of strengthening particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Hunt, W.H., Jr., Metal matrix composites, in Comprehensive Composite Materials, Kelly, A. and Zweben, C., Eds., Amsterdam: Elsevier, 2000, vol. 6, pp. 57–66.

    Google Scholar 

  2. Kainer, K.U., Basics of metal matrix composites, in Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, Kainer, K.U., Ed., Weinheim: Wiley-VCH, 2006, pp. 1–54.

    Book  Google Scholar 

  3. Chernyshova, T.A., Kurganova, Yu.A., Kobeleva, L.I., and Bolotova, L.K., Litye dispersno-uprochnennye alyumomatrichnye kompozitsionnye materialy: izgotovlenie, svoistva, primenenie (Cast Dispersion-Hardened Aluminum Matrix Composite Materials: Production, Properties, Application), Ul’yanovsk: Ul’yanovsk. Gos. Tekh. Univ., 2012.

  4. Chernyshova, T.A., Kobeleva, L.I., Kurganova, Yu.A., Bolotova, L.K., Kalashnikov, I.E., Katin, I.V., Panfilov, A.V., and Panfilov, A.A., Dispersion-filled composite materials for sliding friction pairs, Konstr. Kompozit. Mater., 2007, no. 3, pp. 38–48.

  5. Konovalov, A.V. and Smirnov, S.V., State of the art and trends of research of metal-matrix composites of the Al/SiC system (a review), Konstr. Kompozit. Mater., 2015, no. 1, pp. 30–35.

  6. Ibrahim, I.A., Mohamed, F.A., and Lavernia, E.J., Particulate reinforced metal matrix composites—A review, J. Mater. Sci., 1991, vol. 26, pp. 1137–1156.

    Article  CAS  Google Scholar 

  7. Bindumadhavan, P.N., Wah, H.K., and Prabhakar, O., Assessment of particle-matrix debonding in particulate metal matrix composites using ultrasonic velocity measurements, Mater. Sci. Eng. A, 2002, vol. 323, nos. 1–2, pp. 42–51.

  8. Tekmen, C., Ozdemir, I., Cocen, U., and Onel, K. The mechanical response of Al—Si—Mg/SiCp composite: Influence of porosity, Mater. Sci. Eng. A, 2003, vol. 360, nos. 1–2, pp. 365–371.

  9. Campbell, J., Porosity, in Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design, Amsterdam: Butterworth-Heinemann, Elsevier, 2015, pp. 341–415.

    Google Scholar 

  10. Tjong, S.C. and Ma, Z.Y., Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R: Rep., 2000, vol. 29, pp. 49–113.

    Article  Google Scholar 

  11. Varin, R.A., Intermetallic-reinforced light-metal matrix in-situ composites, Metall. Mater. Trans. A, 2002, vol. 33, pp. 193–201.

    Article  Google Scholar 

  12. Chernyshova, T.A., Bolotova, L.K., Kalashnikov, I.E., Kobeleva, L.I., and Bykov, P.A., Effect of refractory nanoparticles on the structural modification of metal-matrix composites, Russ. Metall., 2007, vol. 2007, no. 3, pp. 236–241.

    Article  Google Scholar 

  13. Murasheva, V.V., Burkovskaya, N.P., and Sevost’yanov, N.V., Methods for obtaining high-temperature Nb-Si in-situ composites (A review), Konstr. Kompoz. Mater., 2015, no. 2, pp. 27–38.

  14. Pineau, A., Benzerga, A.A., and Pardoen, T., Failure of metals I: Brittle and ductile fracture, Acta Mater., 2016. vol. 107, pp. 424–483.

    Article  CAS  Google Scholar 

  15. Vary, A., Material property characterization, in Nondestructive Testing Handbook. Ultrasonic Testing, Moore, P.O., Ed., Columbus: ASTM, 2007, pp. 365–431.

    Google Scholar 

  16. Rokhlin, S.I., Chimenti, D.E., and Nagy, P.B., Physical Ultrasonics of Composites, Oxford: Oxford Univ. Press, 2011.

    Google Scholar 

  17. Schobel, M., Requena, G., Fiedler, G., Tolnai, D., Vaucher, S., and Degischer, H.P., Void formation in metal matrix composites by solidification and shrinkage of an AlSi7 matrix between densely packed particles, Compos. Part A: Appl. Sci. Manuf., 2014, vol. 66, pp. 103–108.

    Article  Google Scholar 

  18. Fitting, D.W. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, New York: Plenum, 1981.

    Book  Google Scholar 

  19. Gusev, V.E. and Karabutov, A.A., Lazernaya optoakustika (Laser Optoacoustics), Moscow: Nauka, 1991.

  20. Ivochkin, A.Yu., Karabutov, A.A., Lyamshev, M.L., Pelivanov, I.M., Rohatgi, U., and Subudkhi, M., Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique, Acoust. Phys., 2007, vol. 53, no. 4, pp. 471–477.

    Article  CAS  Google Scholar 

  21. Ismagilov, I.R., Golenishchev-Kutuzov, V.A., Kalimullin, R.I., Migachev, S.A., and Khasanov, A.A., Detecting surface and volume defects in metals by the laser-acoustic method, Russ. J. Nondestr. Test., 2014, vol. 50, no. 6, pp. 318–324.

    Article  Google Scholar 

  22. Gurevich, S.Yu., Petrov, Yu.V., and Golubev, E.V., Thickness gauging of thin metalware with ultrasound excited by laser nanopulses, Russ. J. Nondestr. Test., 2018, vol. 54, no. 3, pp. 147–150.

    Article  CAS  Google Scholar 

  23. Kim, K.-B., Hsu, D.K., and Barnard, D.J., Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal, NDT & E Int., 2013, vol. 56, pp. 10–16.

    Article  Google Scholar 

  24. Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessement of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestr. Eval., 2013, vol. 32, no. 3, pp. 315–324.

    Article  Google Scholar 

  25. Kartashev, V.G., Kachanov, V.K., Sokolov, I.V., Shalimova, E.V., Kontsov, R.V., and Voronkova, L.V., Ultrasonic structural probing of products based on materials with a complex structure by analyzing the statistical characteristics of the structural noise, Russ. J. Nondestr. Test., 2015, vol. 51, no. 6, pp. 360–373.

    Article  Google Scholar 

  26. Kachanov, V.K., Kartashev, V.G., Sokolov, I.V., Voronkova, L.V., and Shalimova, E.V., Strukturnyi shum v ul’trazvukovoi defektoskopii (Structure-Borne Noise in Ultrasonic Flaw Detection), Moscow: Mosk. Energ. Inst., 2016.

  27. Romanishin, R.I. and Romanishin, I.M., Processing of backscattered signal in ultrasonic testing, Russ. J. Nondestr. Test., 2018, vol. 54, no. 6, pp. 394–399.

    Article  Google Scholar 

  28. Romanishin, R.I. and Romanishin, I.M., Assessment of scattered damage in structural materials, Russ. J. Nondestr. Test., 2019, vol. 55, no. 2, pp. 111–121.

    Article  Google Scholar 

  29. Podymova, N.B., Kalashnikov, I.E., Bolotova, L.K., and Kobeleva, L.I., Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites, Ultrasonics, 2019, vol. 99, p. 105959.

    Article  CAS  Google Scholar 

  30. Zwicker, U., Titan und titanlegierungen, Berlin: Springer, 1974.

  31. Adler, L., Rose, J.H., and Mobley, C., Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment, J. Appl. Phys., 1986, vol. 59, pp. 336–347.

    Article  CAS  Google Scholar 

  32. Ying C.F., Truell R. Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid, J. Appl. Phys., 1956, vol. 27, pp. 1086–1097.

    Article  Google Scholar 

  33. Evans A.G., Tittmann B.R., Ahlberg L., Khuri-Yakub B.T., Kino G.S. Ultrasonic attenuation in ceramics, J. Appl. Phys., 1978, vol. 49, pp. 2669–2679.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out according to state order no. 075-00746-19-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. B. Podymova, I. E. Kalashnikov or L. I. Kobeleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymova, N.B., Kalashnikov, I.E. & Kobeleva, L.I. Laser Optoacoustic Method for Quantitative Estimation of Porosity in Cast Dispersion-Strengthened Metal-Matrix Composite Materials. Russ J Nondestruct Test 56, 949–959 (2020). https://doi.org/10.1134/S1061830920120086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830920120086

Keywords:

Navigation