Skip to main content
Log in

Non-local Quantum Plasmon Resonance in Ultra-small Silver Nanoparticles

  • Original Article
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Understanding the mechanisms of light–matter interactions in ultra-small plasmonic nanoparticles (USNP) represents a major challenge because of the importance of size dependence and quantum effects. The plasmon resonance in such small metallic nanoparticles (< 5 nm) exhibits substantial deviation from classical theory predictions, with evident frequency shifts to a higher energy. This is due to the quantum nature of the free charge carriers and the dynamic response of metallic nanoparticle to the self-consistent electromagnetic fields. Such phenomena have so far been poorly understood in experiments while classical theory has mostly focused on nanostructures and sidestepped the size dependence. Here we report a quantum mechanical model of the metal permittivity to describe the USNP behaviour and experimental evidence. The proposed non-local quantum model of the permittivity for the propagation of plasmon waves in quantum-confined silver nanoparticles has no size limitations in the UNSP range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

All the required information is presented in the manuscript; further clarifications are available from the corresponding author upon a reasonable request.

References

  1. Koenderink AF, Alù A, Polman A (2015) Nanophotonics: shrinking light-based technology. Science 348:516–521

    Article  CAS  Google Scholar 

  2. Lannebère S, Silveirinha MG (2015) Optical meta-atom for localization of light with quantized energy. Nature Comm 6:8766

    Article  Google Scholar 

  3. Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Mater 10:631–636

    Article  CAS  Google Scholar 

  4. Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491:574–577

    Article  CAS  Google Scholar 

  5. Nguyen VH, Nguyen BH (2014) Quantum theory of plasmon energy spectra in electron gases of bulk metal and metallic nanostructures. Adv Nat Sci: Nanosci Nanotechnol 5:035004

    CAS  Google Scholar 

  6. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  7. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) “Biological applications of gold nanoparticles” Chem Soc Rev 37:1896–1908

  8. Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094

    Article  CAS  Google Scholar 

  9. Yu G, Qian J, Zhang P, Zhang B, Zhang W, Yan W, Liu G (2019) Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat Commun 10:4912

    Article  Google Scholar 

  10. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nature Mater 14:567–576

    Article  CAS  Google Scholar 

  11. Da Xu, Lin XX, Xi-Feng WR, Ching EP, Guang-Can G, Qihuang G, Yun-Feng X (2018) Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv Opt Photon 10:703–756

  12. Shabaninezhad M, Ramakrishna G (2020) Theoretical investigation of plasmonic properties of quantum-sized silver nanoparticles. Plasmonics 15:783–795

    Article  CAS  Google Scholar 

  13. Bordo VG (2019) Quantum plasmonics of metal nanoparticles. J Opt Soc Am B 36:323–332

    Article  CAS  Google Scholar 

  14. Karimi S, Moshaii A, Abbasian S, Nikkhah M (2019) “Surface plasmon resonance in small gold nanoparticles: introducing a size-dependent plasma frequency for nanoparticles in quantum regime” Plasmonics 14:851–860

  15. You C, Nellikka,A, De Leon I, Magaña-Loaiza OS (2020) “Multiparticle quantum plasmonics” Nanophotonics, 9:1243–1269

  16. Tame MS, McEnery KR, Ozdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340

    Article  CAS  Google Scholar 

  17. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427

    Article  CAS  Google Scholar 

  18. Kreibig U, Vollmer M (1995) “Optical properties of metal clusters” Springer

  19. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    Article  CAS  Google Scholar 

  20. He Y, Zeng T (2010) First-principles study and model of dielectric functions of silver nanoparticles. J Phys Chem C 114:18023–18030

    Article  CAS  Google Scholar 

  21. Raza S, Kadkhodazadeh S, Christensen T, Vece MD, Wubs M, Mortensen NA, Stenger N (2015) Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature Communications 6:8788

    Article  CAS  Google Scholar 

  22. Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI (2014) A generalized non-local optical response theory for plasmonic nanostructures. Nature Comm 5:3809

    Article  CAS  Google Scholar 

  23. Martino GD, Sonnefraud Y, Kena-Cohen S, Tame M, Ozdemir SK, Kim MS, Maier SA (2012) Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett 12:2504–2508

    Article  Google Scholar 

  24. Toscano G, Straubel J, Kwiatkowski A, Rockstuhl C, Evers F, Xu HN, Asger Mortensen NA, Wubs M (2015) Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics. Nature Comm 6:7132

    Article  Google Scholar 

  25. Moaied M, Yajadda MMA, Ostrikov K (2015) Quantum effects of nonlocal plasmons in epsilon-near-zero properties of a thin gold film slab. Plasmonics 10(6):1615–1623

    Article  CAS  Google Scholar 

  26. Moaied M, Palomba S, Ostrikov K (2017) Quantum plasmonics: longitudinal quantum plasmons in copper, gold, and silver. J Opt 19:105402

    Article  Google Scholar 

  27. Manfredi G (2005) How to model quantum plasmas. Fields Inst Commun 46:263–288

    Google Scholar 

  28. Glenzer SH, Landen OL, Neumayer P, Lee RW, Widmann K, Pollaine SW, Wallace RJ, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft WD, Redmer R (2007) Observations of plasmons in warm dense matter. Phys Rev Lett 98:065002

    Article  CAS  Google Scholar 

  29. David C, de Abajo FJG (2011) Spatial nonlocality in the optical response of metal nanoparticles. J Phys Chem C 115:19470

    Article  CAS  Google Scholar 

  30. Howie A (1999) “Topics in Electron Diffraction and microscopy of materials” (P.B. Hirsch Editor), Institute of Physics Publishing, Bristol

  31. Alexandrov AF, Bogdankevich LS, Rukhadze AA (1984) Principles of plasma electrodynamics. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  32. Ashcroft NW, Mermin ND (1976) “Solid state physics”, Saunders

  33. Shen NH, Koschny T, Kafesaki M, Soukoulis CM (2012) Optical metamaterials with different metals. Phys Rev B 85:075120

    Article  Google Scholar 

Download references

Funding

This project was supported by the School of Physics (University of Sydney).

Author information

Authors and Affiliations

Authors

Contributions

M.M. conceived the idea and performed the calculations. K.O. conceptualized the ideas. S.P. suggested to use published experimental data to validate the model. M.M wrote the manuscript with input from S.P. and K.O. K.O and S.P. supervised and guided the project.

Corresponding author

Correspondence to S. Palomba.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moaied, M., Ostrikov, K. & Palomba, S. Non-local Quantum Plasmon Resonance in Ultra-small Silver Nanoparticles. Plasmonics 16, 1261–1267 (2021). https://doi.org/10.1007/s11468-021-01403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01403-y

Keywords

Navigation