Skip to main content
Log in

Unoccupied Electronic States and Potential Barrier in Films of Substituted Diphenylphthalides on the Surface of Highly Ordered Pyrolytic Graphite

  • POLYMERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of a study of the unoccupied electronic states of ultrathin films of bis-carboxyphenyl-phthalide (DCA-DPP) and bis-methylphenyl-phthalide (DM-DPP) up to 8 nm thick are presented. The studies are carried out by total current spectroscopy (TCS) in the energy range from 5 to 20 eV above EF during thermal vacuum deposition of these organic films on the surface of highly ordered pyrolytic graphite (HOPG). The values of Evac relative to EF, i.e., the work function of electrons of the DM-DPP films at a film thickness of 5–8 nm are found to be 4.3 ± 0.1 eV. The values of the work function of electrons of the DCA‑DPP films are found to be 3.7 ± 0.1 eV. The structure of the maxima of unoccupied electronic states of DCA-DPP and DM-DPP films in the studied energy range is established. A comparison of the obtained properties of DCA-DPP and DM-DPP films with the properties of films of molecules of unsubstituted diphenylphthalide (DPP) is presented. Thus, the –CH3 substitution of the DPP molecule has almost no effect on the height of the potential barrier between the film and the HOPG surface, while –COOH substitution of the DPP molecule leads to an increase in the height of the potential barrier between the film and the HOPG substrate surface by 0.5–0.6 eV. Substitution of DPP molecules with –COOH functional groups and, thus, the formation of DCA-DPP molecules lead to a shift of two maxima of the fine structure of the total current spectra located at energies in the range from 5 to 8 eV above EF by about 1 eV towards the lower electron energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. Johansson, A. N. Lachinov, S. Stafstrom, and W. R. Salaneck, Synth. Met. 67, 319 (1994).

    Article  Google Scholar 

  2. A. R. Yusupov, A. N. Lachinov, L. R. Kalimullina, R. M. Gadiev, and D. V. Nikitina, Phys. Solid State 61, 450 (2019).

    Article  ADS  Google Scholar 

  3. A. N. Lachinov, E. R. Zhdanov, R. G. Rakhmeev, R. B. Salikhov, and V. A. Antipin, Phys. Solid State 52, 195 (2010).

    Article  ADS  Google Scholar 

  4. N. L. Asfandiarov, S. A. Pshenichnyuk, A. S. Vorob’ev, E. P. Nafikova, A. N. Lachinov, V. A. Kraikin, and A. Modelli, J. Chem. Phys. 142, 174308 (2015).

    Article  ADS  Google Scholar 

  5. A. N. Aleshin, P. S. Krylov, A. S. Berestennikov, I. P. Shcherbakov, V. N. Petrov, V. V. Kondratiev, and S. N. Eliseeva, Synth. Met. 217, 7 (2016).

    Article  Google Scholar 

  6. P. S. Krylov, A. S. Berestennikov, S. A. Fefelov, A. S. Komolov, and A. N. Aleshin, Phys. Solid State 58, 2567 (2016).

    Article  ADS  Google Scholar 

  7. N. L. Asfandiarov, S. A. Pshenichnyuk, R. G. Rakhmeev, A. N. Lachinov, and V. A. Kraikin, Tech. Phys. 63, 1054 (2018).

    Article  Google Scholar 

  8. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  9. M. Krzywiecki, L. Grzadziel, P. Powroznik, M. Kwoka, J. Rechmann, and A. Erbe, Phys. Chem. Chem. Phys. 20, 16092 (2018).

    Article  Google Scholar 

  10. R. S. Smerdov, A. S. Mustafaev, Y. M. Spivak, and V. A. Moshnikov, J. Phys.: Conf. Ser. 1135, 012038 (2018).

    Google Scholar 

  11. A. Y. Sosorev, M. K. Nuraliev, E. V. Feldman, D. R. Maslennikov, O. V. Borshchev, M. S. Skorotetcky, N. M. Surin, M. S. Kazantsev, S. A. Ponomarenko, and D. Y. Paraschuk, Phys. Chem. Chem. Phys. 21, 11578 (2019).

    Article  Google Scholar 

  12. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, V. S. Sobolev, A. V. Koroleva, S. A. Pshenichnyuk, N. L. Asfandiarov, A. Modelli, B. Handke, O. V. Borshchev, and S. A. Ponomarenko, J. Electron Spectrosc. Rel. Phenom. 235, 40 (2019).

    Article  Google Scholar 

  13. S. A. Pshenichnyuk, A. Modelli, N. L. Asfandiarov, E. F. Lazneva, and A. S. Komolov, J. Chem. Phys. 151, 214309 (2019).

    Article  ADS  Google Scholar 

  14. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, V. A. Kraikin, and B. Handke, Phys. Solid State 61, 1922 (2019).

    Article  ADS  Google Scholar 

  15. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, A. V. Baramygin, V. S. Sobolev, S. A. Pshenichnyuk, N. L. Asfandiarov, V. A. Kraikin, and B. Handke, Phys. Solid State 62, 1245 (2020).

    Article  Google Scholar 

  16. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).

    Article  Google Scholar 

  17. A. S. Komolov, E. F. Lazneva, S. N. Akhremtchik, N. S. Chepilko, and A. A. Gavrikov, J. Phys. Chem. C 117, 12633 (2013).

    Article  Google Scholar 

  18. A. S. Komolov and P. J. Moeller, Appl. Surf. Sci. 244, 573 (2005).

    Article  ADS  Google Scholar 

  19. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  ADS  Google Scholar 

  20. A. L. Shu, W. E. McClain, J. Schwartz, and A. Kahn, Org. Electron. 15, 2360 (2014).

    Article  Google Scholar 

  21. S. Braun, W. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).

    Article  Google Scholar 

  22. A. S. Komolov and P. J. Moeller, Synth. Met. 138, 119 (2003).

    Article  Google Scholar 

  23. J.-L. Bredas and A. J. Heeger, Chem. Phys. Lett. 217, 507 (1994).

    Article  ADS  Google Scholar 

  24. R. A. Rosenberg, P. J. Love, and V. Rehn, Phys. Rev. B 33, 4034 (1986).

    Article  ADS  Google Scholar 

  25. A. S. Komolov, E. F. Lazneva, N. B. Gerasimova, Yu. A. Panina, A. V. Baramygin, G. D. Zashikhin, and S. A. Pshenichnyuk, Phys. Solid State 58, 377 (2016).

    Article  ADS  Google Scholar 

  26. I. G. Hill, A. Kahn, J. Cornil, D. A. dos Santos, and J. L. Bredas, Chem. Phys. Lett. 317, 444 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

TCS studies of phthalide films were carried out with the support of the Russian Science Foundation, grant no. 19-13-00021. HOPG diagnostics was performed with the support of the Russian Foundation for Basic Research (20-03-00026). The equipment of the Research park of Saint Petersburg State University “Physical methods of surface investigation” and “Diagnostics of functional materials for medicine, pharmacology and nanoelectronics” was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komolov, A.S., Lazneva, E.F., Gerasimova, N.B. et al. Unoccupied Electronic States and Potential Barrier in Films of Substituted Diphenylphthalides on the Surface of Highly Ordered Pyrolytic Graphite. Phys. Solid State 63, 362–367 (2021). https://doi.org/10.1134/S1063783421020104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421020104

Keywords:

Navigation