Skip to main content
Log in

Investigation of the Electronic Structure and Optical Absorption Spectra of the Icosahedral Gold Fullerene Au42

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic structure of the gold fullerene molecule Au42 has been studied within the framework of the Hubbard Hamiltonian. Expressions are obtained for the Fourier transforms of the Green’s functions, the poles of which determine the energy spectrum of the considered nanocluster. The energy spectrum of Au42 is studied in comparison with the spectrum of the icosahedral gold fullerene Au32. The energy spectrum indicates the semiconducting state of the gold fullerene Au42. The density of electronic states is given, the peaks of which correspond to the Van Hove features. The optical absorption spectra of the neutral and negatively charged fullerene Au42 are presented; the energy of the first direct optical transition of the negatively charged ion of the gold fullerene Au\(_{{42}}^{ - }\) is 0.985 eV, and is in the near infrared region. The possibility of using the investigated nanocluster of gold atoms for the diagnosis and treatment of cancer is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. X. Zhang, S. Wang, Y. Liu, L. Li, and C. Sun, APL Mater. 5, 053501 (2017).

    Article  ADS  Google Scholar 

  2. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science (Washington, DC, U. S.) 321, 674 (2008).

    Article  ADS  Google Scholar 

  3. F. Baletto and R. Ferrando, Phys. Chem. Chem. Phys. 17, 28256 (2015).

    Article  Google Scholar 

  4. P. Singh, S. Pandit, V. R. S. S. Mokkapati, and A. Garg, Int. J. Mol. Sci. 19, 1979 (2018).

    Article  Google Scholar 

  5. A. Zhang, W. Guo, Y. Qi, J. Wang, X. Ma, and D. Yu, Nanoscale Res. Lett. 11, 279 (2016).

    Article  ADS  Google Scholar 

  6. W. Li, P. K. Brown, L. V. Wang, and Y. Xia, Contrast Media Mol. Imaging 6, 370 (2011).

    Article  Google Scholar 

  7. Y. Gao and C. Zeng, J. Am. Chem. Soc. 127, 3698 (2005).

    Article  Google Scholar 

  8. J. Wang, H. Ning, Q. Ma, Y. Liu, and Y. Li, J. Chem. Phys. 129, 134705 (2008).

    Article  ADS  Google Scholar 

  9. D. Wang, X. Sun, H. Shen, D. Hou, and Y. Zhai, Chem. Phys. Lett. 457, 366 (2008).

    Article  ADS  Google Scholar 

  10. F. C. Ju and M. R. Ping, Solid State Commun. 288, 53 (2019).

    Article  Google Scholar 

  11. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  12. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  13. M. P. Johansson, D. Sundholm, and J. Vaara, Angew. Chem. Int. Ed. 43, 2678 (2004).

    Article  Google Scholar 

  14. C. Adamo and V. Barone, J. Chem. Rev. 110, 6158 (1999).

    ADS  Google Scholar 

  15. P. N. D’yachkov, Russ. J. Inorg. Chem. 60, 947 (2015).

    Article  Google Scholar 

  16. G. I. Mironov, Russ. J. Inorg. Chem. 63, 66 (2018).

    Article  Google Scholar 

  17. J. Hubbard, Proc. R. Soc. London, Ser. A 276 (1365), 238 (1963).

    Article  ADS  Google Scholar 

  18. S. P. Shubin and S. V. Wonsowskii, Proc. R. Soc. London, Ser. A 145, 159 (1934).

    Article  ADS  Google Scholar 

  19. G. I. Mironov, Phys. Solid State 50, 188 (2008).

    Article  ADS  Google Scholar 

  20. G. I. Mironov, Phys. Met. Metallogr. 105, 327 (2008).

    Article  ADS  Google Scholar 

  21. H. Ning, J. Wang, Q.-M. Ma, H.-Y. Han, and Y. Liu, J. Phys. Chem. Solids 75, 696 (2014).

    Article  ADS  Google Scholar 

  22. G. I. Mironov, J. Low Temp. Phys. 45, 404 (2019).

    Article  Google Scholar 

  23. G. I. Mironov, Phys. Solid State 61, 1144 (2019).

    Article  ADS  Google Scholar 

  24. E. R. Filippova and G. I. Mironov, J. Low Temp. Phys. 37, 511 (2011).

    Article  Google Scholar 

  25. G. I. Mironov and E. R. Filippova, Phys. Solid State 54, 1709 (2012).

    Article  ADS  Google Scholar 

  26. G. I. Mironov and E. R. Filippova, Phys. Met. Metallogr. 113, 9 (2012).

    Article  ADS  Google Scholar 

  27. G. I. Mironov and E. R. Sozykina, J. Low Temp. Phys. 45, 113 (2019).

    Article  Google Scholar 

  28. G. I. Mironov, Russ. J. Inorg. Chem. 64, 1257 (2019).

    Article  Google Scholar 

  29. E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge Univ. Press, Cambridge, 2003).

    Book  Google Scholar 

  30. J. Lee, D. K. Chatterjee, M. H. Lee, et al., Cancer Lett. 347, 46 (2014).

    Article  Google Scholar 

  31. J. F. Hainfeld, L. Lin, D. N. Slatkin, F. A. Dilmanian, T. M. Vadas, and H. M. Smilowitz, Nanomedicine 10, 1609 (2014).

    Article  Google Scholar 

  32. Y. Xia, W. Li, C. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, and P. B. Jarreau, Acc. Chem. Res. 44, 914 (2011).

    Article  Google Scholar 

  33. B. Pang, X. Yang, and Y. Xia, Nanomedicine 11, 1715 (2016).

    Article  Google Scholar 

  34. J. Cuo, K. Rahme, Y. He, L. Li, J. D. Holmes, and C. M. O’Driscoll, Int. J. Nanomed. 12, 6131 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Mironov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, G.I. Investigation of the Electronic Structure and Optical Absorption Spectra of the Icosahedral Gold Fullerene Au42 . Phys. Solid State 63, 324–331 (2021). https://doi.org/10.1134/S1063783421020190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421020190

Keywords:

Navigation