Skip to main content
Log in

Features of the Behavior of Mn2+ Ions in the 3D Dirac Semimetal α-Cd3As2 from EPR Data

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The behavior of manganese impurity in three-dimensional Dirac semimetal Cd3As2 has been studied using the electron paramagnetic resonance (EPR) method and electromagnetic measurements. It is found that, in contrast to doping with europium, doping with manganese (as well as iron) does not change the sign of magnetoresistance, which is almost completely suppressed at high manganese concentrations. At the same time, the character of the magnetic-field influence on the contact potential changes. The values of g factors measured using EPR coincide with those of a free electron at all temperatures, which indicates (taking into account the fluctuation behavior of the EPR linewidth and reduced magnetic moment at Mn2+) the formation of short-lived bound states of the Mn2+ ion and conduction electrons—antiferromagnetic polarons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. S. Zhuravlev, T. S. Shamirzaev, and N. A. Yakusheva, Semiconductors 32, 704 (1998).

    Article  ADS  Google Scholar 

  2. C. Mocuta, D. Bonamy, S. Stanescu, S. El Moussaoui, A. Barbier, F. Montaigne, F. Maccherozzi, E. Bauer, and R. Belkhou, Sci. Rep. 7, 16970 (2017).

    Article  ADS  Google Scholar 

  3. Y. Hwang, J. Choi, Dang Duc Dung, Y. Shin, and S. Cho, J. Appl. Phys. 109, 063914 (2011).

    Article  ADS  Google Scholar 

  4. S. M. Young, S. Zaheer, J. C. Y. Theo, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 108, 140405 (2012).

    Article  ADS  Google Scholar 

  5. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014).

    Article  ADS  Google Scholar 

  6. C. J. M. Denissen, H. Nishihara, J. C. van Gool, and W. J. M. de Jonge, Phys. Rev. 33, 7637 (1986).

    Article  ADS  Google Scholar 

  7. E. K. Arushanov, Prog. Cryst. Growth Charact. 25, 131 (1992).

    Article  Google Scholar 

  8. I. Crassee, R. Sankar, W.-L. Lee, A. Akrap, and M. Orlita, Phys. Rev. Mater. 2, 120302 (2018).

    Article  Google Scholar 

  9. S. F. Marenkin, V. M. Trukhan, I. V. Fedorchenko, S. V. Trukhanov, and T. V. Shelkovaya, Russ. J. Inorg. Chem. 59, 355 (2014).

    Article  Google Scholar 

  10. S. N. Jammalamadaka, S. Kuntz, O. Berg, W. Kittler, U. M. Kannan, J. A. Chelvane, and C. Sürgers, Sci. Rep. 5, 13621 (2015).

    Article  ADS  Google Scholar 

  11. M. Goyal, H. Kim, T. Schumann, T. Schumann, L. Galletti, A. A. Burkov, and S. Stemmer, Phys. Rev. Mater. 3, 064204 (2019).

    Article  Google Scholar 

  12. N. Marcano, S. Sangiao, M. Plaza, L. Pérez, A. Fernández Pacheco, R. Córdoba, M. C. Sánchez, L. Morellón, M. R. Ibarra, and J. M. de Teresa, Appl. Phys. Lett. 96, 082110 (2010).

    Article  ADS  Google Scholar 

  13. B. L. Altshuler, A. G. Aronov, and B. Z. Spivak, JETP Lett. 33, 94 (1981).

    ADS  Google Scholar 

  14. S. V. Iordanskii, JETP Lett 60, 206 (1994); P. W. Anderson, Phys. Rev. 124, 41 (1961).

    ADS  Google Scholar 

  15. W. E. Liu, E. M. Hankiewicz, and D. Culcer, arXiv: 1708.04930v1 [cond-mat.mes-hall] (2017); J. Kondo, Progr. Theor. Phys. 32, 37 (1964).

    Article  Google Scholar 

  16. Yu. V. Goryunov and A. N. Nateprov, Phys. Solid State 60, 68 (2018).

    Article  ADS  Google Scholar 

  17. Yu. V. Goryunov and A. N. Nateprov, Phys. Solid State 62, 100 (2020).

    Article  ADS  Google Scholar 

  18. M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201 (2013).

    Article  ADS  Google Scholar 

  19. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

    Article  ADS  Google Scholar 

  20. N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 (1955).

    Article  ADS  Google Scholar 

  21. I. Ya. Korenblit and E. F. Shender, Sov. Phys. Usp. 21, 832 (1978).

    Article  ADS  Google Scholar 

  22. B. I. Kochelaev, L. R. Tagirov, and M. G. Khusainov, Sov. Phys. JETP 49, 291 (1979).

    ADS  Google Scholar 

  23. G. G. Khaliullin and B. I. Kochelaev, Phys. Lett. A 106, 318 (1984).

    Article  ADS  Google Scholar 

  24. T. S. Altshuler, Yu. V. Goryunov, and M. S. Bresler, Phys. Rev. 73, 235210 (2006).

    Article  Google Scholar 

  25. E. Kogan, Graphene 2, 8 (2013).

    Article  Google Scholar 

  26. H.-R. Chang, J. Zhou, Sh.-X. Wang, W.-Y. Shan, and D. Xiao, Phys. Rev. B 92, 241103(R) (2015).

  27. J.-H. Sun, D.-H. Xu, F.-Ch. Zhang, and Y. Zhou, Phys. Rev. B 92, 195124 (2015).

    Article  ADS  Google Scholar 

  28. A. N. Holden, C. Kittel, F. R. Merritt, and W. A. Yager, Phys. Rev. Lett. 77, 147 (1949).

    Google Scholar 

  29. S. F. Marenkin, A. N. Aronov, I. V. Fedorchenko, A. L. Zheludkevich, A. V. Khoroshilov, M. G. Vasil’ev, and V. V. Kozlov, Inorg. Mater. 54, 863 (2018).

    Article  Google Scholar 

  30. V. B. Lazarev, N. P. Luzhnaya, and S. F. Marenkin, Neorg. Khim. 17, 3082 (1972).

    Google Scholar 

  31. K. K. Palkina, V. G. Kuznetsov, and V. B. Lazarev, Neorg. Khim. 20, 226 (1975).

    Google Scholar 

  32. C. H. Townes and J. Turkevich, Phys. Rev. Lett. 77, 148 (1949).

    Google Scholar 

  33. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), Chap. 17.

    Google Scholar 

  34. S. A. Al’tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974; Nauka, Moscow, 1972), p. 172.

  35. G. A. Govor, Phys. Status Solidi A 91, K59 (1985).

    Article  ADS  Google Scholar 

  36. L. Pytlik and A. Ziȩba, J. Magn. Magn. Mater 51, 199 (1985).

    Article  ADS  Google Scholar 

  37. K. Maki, T. Kaneko, H. Hiroyoshi, and K. Kamigaki, J. Magn. Magn. Mater. 177–181, 1361 (1998).

    Article  ADS  Google Scholar 

  38. L. Däweritza, L. Wan, B. Jenichen, C. Herrmann, J. Mohanty, A. Trampert, and K. H. Ploog, J. Appl. Phys. 96, 5056 (2004).

    Article  ADS  Google Scholar 

  39. A. de Campos, M. A. Mota, S. Gama, A. A. Coelho, B. D. White, M. S. da Luz, and J. J. Neumeier, J. Cryst. Growth 333, 54 (2011).

    Article  ADS  Google Scholar 

  40. V. I. Mitsiuk, N. Yu. Pankratov, G. A. Govor, S. A. Nikitin, and A. I. Smarzhevskaya, Phys. Solid State 54, 1988 (2012).

    Article  ADS  Google Scholar 

  41. N. D. Zhigadlo, J. Cryst. Growth 480, 148 (2017).

    Article  ADS  Google Scholar 

  42. C. J. M. Denissen, Analysis of the Magnetic Properties of Semimagnetic Semiconductors: An Experimental Study (Tech. Univ. Eindhoven, Eindhoven, 1986). https://doi.org/10.6100/IR251727

    Book  Google Scholar 

  43. A. Abragam, Phys. Rev. 79, 534 (1950).

    Article  ADS  Google Scholar 

  44. L. K. Aminov, I. N. Kurkin, and B. Z. Malkin, Phys. Solid State 55, 1343 (2013).

    Article  ADS  Google Scholar 

  45. F. J. Dyson, Phys. Rev. 98, 349 (1955).

    Article  ADS  Google Scholar 

  46. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980), Chap. 14.

  47. R. K. Wangsness, Phys. Rev. 91, 1085 (1953).

    Article  ADS  Google Scholar 

  48. H. Wang, J. Ma, Q. Wei, and J. Zhao, J. Semicond. 41, 072903 (2020).

  49. A. B. Mekhiya, A. A. Kazakov, L. N. Oveshnikov, A. B. Davydov, A. I. Ril’, S. F. Marenkin, and B. A. Aronzon, Semiconductors 53, 1439 (2019).

    Article  ADS  Google Scholar 

  50. L. A. Saipulaeva, Sh. B. Abdulvagidov, M. M. Gadzhialiev, A. G. Alibekov, N. V. Mel’nikova, E. A. Stepanova, D. O. Alikin, V. S. Zakhvalinskii, A. I. Ril’, S. F. Marenkin, and Z. Sh. Pirmagomedov, Fiz. Tekh. Vys. Davl. 29, 48 (2019).

    Google Scholar 

  51. N. P. Grazhdankina, Sov. Phys. Usp. 11, 727 (1968).

    Article  ADS  Google Scholar 

  52. M. F. Hagedorn and W. Jeitschko, J. Solid Status Chem. 113, 257 (1994).

    Article  ADS  Google Scholar 

  53. M. H. Möller and W. Jeitschko, Z. Kristallogr.—Cryst. Mater. 204, 77 (1993).

    Article  Google Scholar 

  54. N. T. Gladkikh, A. P. Kryshtal, and S. I. Bogatyrenko, Tech. Phys. 55, 1657 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. V. Moshnyaga (Georg August University of Göttingen) for the help in measuring the magnetic susceptibility.

Funding

This study was performed within state contracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Goryunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryunov, Y.V., Nateprov, A.N. Features of the Behavior of Mn2+ Ions in the 3D Dirac Semimetal α-Cd3As2 from EPR Data. Phys. Solid State 63, 223–231 (2021). https://doi.org/10.1134/S1063783421020098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421020098

Keywords:

Navigation