Skip to main content
Log in

Estimating and enlarging the region of attraction of multi-equilibrium points system by state-dependent edge impulses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When an isolated equilibrium of a nonlinear system is locally attractive, it might be difficult to estimate and then enlarge its Region of Attraction (RA). To solve this problem, this paper, by means of impulsive control, provides an effective method, i.e., state-dependent edge impulse (STDEI) combining with SOS programming and trajectory reversing with convex hull. Based on SOS programming and trajectory reversing, the initial estimation of RA is established. Then, by applying STDEI, we can design and then obtain the enlarged estimation of RA. Three numerical examples are provided to demonstrate the performance of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aleksandr Mikhailovich Lyapunov: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  2. Liu, Xiwei, Chen, Tianping: Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  3. Zhou, Yinghua, Li, Chuandong, Wang, Hui: Stability analysis on state-dependent impulsive hopfield neural networks via fixed-time impulsive comparison system method. Neurocomputing 316, 20–29 (2018)

    Article  Google Scholar 

  4. Zhang, Xianxiu, Li, Chuandong, Huang, Tingwen: Hybrid impulsive and switching hopfield neural networks with state-dependent impulses. Neural Netw. 93, 176–184 (2017)

    Article  Google Scholar 

  5. Li, Liangliang, Wang, Xin, Li, Chuandong, Feng, Yuming: Exponential synchronizationlike criterion for state-dependent impulsive dynamical networks. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1025–1033 (2018)

    Article  MathSciNet  Google Scholar 

  6. Li, C., Wu, S., Feng, G.G., Liao, X.: Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans. Neural Netw. 22(2), 323–329 (2011)

    Article  Google Scholar 

  7. Chu, Chia-Chi., Chiang, Hsiao-Dong.: Boundary properties of the bcu method for power system transient stability assessment. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pages 3453–3456. IEEE, 2010

  8. Mazumder, Sudip K., Fuente, Eduardo Pilo de la.: Transient stability analysis of power system using polynomial lyapunov function based approach. In 2014 IEEE PES General Meeting| Conference & Exposition, pages 1–5. IEEE, 2014

  9. Hsiao-Dong, C., Wu, F., Varaiya, P.: Foundations of direct methods for power system transient stability analysis. IEEE Trans. Circuits Syst 34(2), 160–173 (1987)

    Article  MathSciNet  Google Scholar 

  10. Han, Dongkun., El-Guindy, Ahmed., Althoff, Matthias.: Power systems transient stability analysis via optimal rational lyapunov functions. In 2016 IEEE Power and Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2016

  11. Yang, Xiaofan, Liao, Xiaofeng, Li, Chuandong, Tang, Yuan Yan: Local stability and attractive basin of cohen-grossberg neural networks. Nonlinear Anal.: Real World Appl. 10(5), 2834–2841 (2009)

    Article  MathSciNet  Google Scholar 

  12. Jin, Dequan, Huang, Zhili, Peng, Jigen: Approximation on attraction domain of cohen-grossberg neural networks. Appl. Math. Comput. 217(21), 8747–8753 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Tedrake, Russ, Manchester, Ian R., Tobenkin, Mark, Roberts, John W.: Lqr-trees: feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Article  Google Scholar 

  14. Tobenkin, Mark M., Manchester, Ian R., Tedrake, Russ: Invariant funnels around trajectories using sum-of-squares programming. IFAC Proc. Vol. 44(1), 9218–9223 (2011)

    Article  Google Scholar 

  15. Chesi, Graziano: Rational lyapunov functions for estimating and controlling the robust domain of attraction. Automatica 49(4), 1051–1057 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pitarch, José Luis, Sala, Antonio, Arino, Carlos Vicente: Closed-form estimates of the domain of attraction for nonlinear systems via fuzzy-polynomial models. IEEE Trans. Cybern. 44(4), 526–538 (2013)

    Article  Google Scholar 

  17. Saleme, Ahmed, Tibken, Bernd, Warthenpfuhl, Sascha A., Selbach, Christian: Estimation of the domain of attraction for non-polynomial systems: a novel method. IFAC Proc. Vol. 44(1), 10976–10981 (2011)

    Article  Google Scholar 

  18. Chesi, Graziano: Domain of Attraction: Analysis and Control via SOS Programming, vol. 415. Springer Science, Berlin (2011)

    Book  Google Scholar 

  19. Amato, F., Ambrosino, R., De Tommasi, G., Merola, A.: Estimation of the domain of attraction for a class of hybrid systems. Nonlinear Anal.: Hybrid Syst. 5(3), 573–582 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Chesi, Graziano: Estimating the domain of attraction for non-polynomial systems via lmi optimizations. Automatica 45(6), 1536–1541 (2009)

    Article  MathSciNet  Google Scholar 

  21. Li, Chunji., Cao, Lili., Li, Ning., Chen, Xiangyong.: Estimating the domain of attraction of a class of sir epidemic model. In 2008 Chinese Control and Decision Conference, pages 5010–5013. IEEE, 2008

  22. Topcu, Ufuk, Packard, Andrew, Seiler, Peter: Local stability analysis using simulations and sum-of-squares programming. Automatica 44(10), 2669–2675 (2008)

    Article  MathSciNet  Google Scholar 

  23. Chowdhury, Dhrubajit., Kant, Nilay., Mukherjee, Ranjan., Khalil, Hassan K.: Enlarging the region of attraction of equilibria of underactuated systems using sum of squares and impulse manifold method. In 2017 American Control Conference (ACC), pages 893–898. IEEE, 2017

  24. Kant, Nilay, Mukherjee, Ranjan, Chowdhury, Dhrubajit, Khalil, Hassan K.: Estimation of the region of attraction of underactuated systems and its enlargement using impulsive inputs. IEEE Trans. Robot. 35(3), 618–632 (2019)

    Article  Google Scholar 

  25. Margolis, S., Vogt, W.: Control engineering applications of vi zubov’s construction procedure for lyapunov functions. IEEE Trans. Autom. Control 8(2), 104–113 (1963)

    Article  Google Scholar 

  26. Balint, St, Balint, A., Negru, V.: The optimal lyapunov function in diagonalizable case. An. Univ. Timisoara 24(1–2), 1–7 (1986)

    MATH  Google Scholar 

  27. Davison, E.J., Kurak, E.M.: A computational method for determining quadratic lyapunov functions for non-linear systems. Automatica 7(5), 627–636 (1971)

    Article  MathSciNet  Google Scholar 

  28. Johansson, Mikael: Piecewise quadratic estimates of domains of attraction for linear systems with saturation. IFAC Proc. Vol. 35(1), 187–192 (2002)

    Article  Google Scholar 

  29. Gering, Stefan, Eciolaza, Luka, Adamy, Jürgen, Sugeno, Michio: A piecewise approximation approach to nonlinear systems: stability and region of attraction. IEEE Trans. Fuzzy Syst. 23(6), 2231–2244 (2015)

    Article  Google Scholar 

  30. Li, H.., Li, C., Ouyang, D., Nguang, S. K.: Impulsive stabilization of nonlinear time-delay system with input saturation via delay-dependent polytopic approach. IEEE Trans. Syst. Man. Cybern. Syst. 1–12 (2020)

  31. Bakhtiari, R., Yazdanpanah, MJ.: Designing a linear controller for polynomial systems with the largest domain of attraction via lmis. In 2005 International Conference on Control and Automation, volume 1, pages 449–453. IEEE, 2005

  32. Chesi, Graziano: Computing output feedback controllers to enlarge the domain of attraction in polynomial systems. IEEE Trans. Autom. Control 49(10), 1846–1853 (2004)

    Article  MathSciNet  Google Scholar 

  33. Li, C., Feng, G., Huang, T.: On hybrid impulsive and switching neural networks. IEEE Trans. Syst., Man, Cybern. Part B (Cybernetics) 38(6), 1549–1560 (2008)

    Article  Google Scholar 

  34. Parrilo, Pablo A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology, 2000

  35. Han, Dongkun., Panagou, Dimitra.: Chebyshev approximation and higher order derivatives of lyapunov functions for estimating the domain of attraction. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1181–1186. IEEE, 2017

  36. Jarvis-Wloszek, Zachary., Feeley, Ryan ., Tan, Weehong., Sun, Kunpeng., Packard, Andrew.: Some controls applications of sum of squares programming. In 42nd IEEE international conference on decision and control (IEEE Cat. No. 03CH37475), volume 5, pages 4676–4681. IEEE, 2003

  37. Tan, Weehong, Packard, Andrew: Stability region analysis using polynomial and composite polynomial lyapunov functions and sum-of-squares programming. IEEE Trans. Autom. Control 53(2), 565–571 (2008)

    Article  MathSciNet  Google Scholar 

  38. Genesio, R., Vicino, A.: New techniques for constructing asymptotic stability regions for nonlinear systems. IEEE Trans. Circuits Syst 31(6), 574–581 (1984)

  39. Kant, Nilay., Chowdhury, Dhrubajit., Mukherjee, Ranjan ., Khalil, Hassan K.: An algorithm for enlarging the region of attraction using trajectory reversing. In 2017 American Control Conference (ACC), pages 4171–4176. IEEE, 2017

  40. Eddy, William F.: A new convex hull algorithm for planar sets. ACM Trans. Math. Softw. 3(4), 398–403 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (2018AAA0100101) , Fundamental Research Funds for the Central Universities under Grant (XDJK 2019B054) , and in part by National Natural Science Foundation of China (61873213, 61633011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Algorithm for STDEI method

figure b

B Results of SOS programming

In this paper, we use a linearization system to get candidate Lyapunov function. For system (18), setting \(Q=diag[1\ 1]\), then P can be obtained through solve \(A^{T}P+PA = Q\), where A is the jacobian matrix of system (18).

$$\begin{aligned} P= \left[ \begin{matrix} 3.4833 &{} 0.5 \\ 0.5 &{} 3.3333 \end{matrix} \right] \end{aligned}$$

Then, applying the SOS programing, obtaining \(\gamma =1.0033,\)

$$\begin{aligned} V= & {} 0.0018944\delta ^{6} + 0.0060405\delta ^{5}\omega \\&+ 0.014242\delta ^{4}\omega ^{2} \\&+ 0.0023657\delta ^{3}\omega ^{3} + 0.020956\delta ^{2}\omega ^{4}\\&- 0.0067449\delta \omega ^{5}\\&+ 0.0062642\omega ^{6}+ 8.4643\times 10^{-9}\delta ^{5} \\&+ 9.9009\times 10^{-9}\delta ^{4}\omega \\&- 7.1832\times 10^{-10}\delta ^3\omega ^{2} \\&- 1.3331\times 10^{-8}\delta ^{2}\omega ^{3} \\&- 1.8875\times 10^{-8}\delta \omega ^{4}\\&- 1.1032\times 10^{-8}\omega ^{5} \\&+ 0.00062251\delta ^{4}+ 0.020627\delta ^{3}\omega \\&+ 0.028212\delta ^{2}\omega ^{2} \\&+ 0.026518\delta \omega ^{3} + 0.0051252\omega ^{4}\\&- 5.2122\times 10^{-8}\delta ^{3} \\&+ 1.0591\times 10^{-8}\delta ^{2}\omega \\&+ 2.064\times 10^{-8}\delta \omega ^{2}\\&+ 6.8358\times 10^{-8}\omega ^{3} \\&+ 0.097865\delta ^{2} + 0.022028\delta \omega + 0.099737\omega ^{2}. \end{aligned}$$

Similar, for system (19), set \(Q=diag[1\ 1]\), by simple calculation, we obtain

$$P= \left[ \begin{matrix} 0.001&{} 0 \\ 0 &{} 0.0009 \end{matrix} \right] . $$

For point (0, 0), \(\gamma =1.0004,\)

$$\begin{aligned} V= & {} 0.00033869x_{1}^{6} - 2.8363\times 10^{-5}x_{1}^{5}x_{2}\\&+ 0.0016375x_{1}^{4}x_{2}^{2} \\&+ 0.00011389x_{1}^{3}x_{2}^{3} + 0.00055266x_{1}^{2}x_{2}^{4}\\&+ 0.001014x_{1}x_{2}^{5}\\&+ 0.00095217x_{2}^{6} - 0.0033133x_{1}^{5}\\&+ 0.00011255x_{1}^{4}x_{2} \\&- 0.0031276x_{1}^{3}x_{2}^{2} \\&- 0.00021796x_{1}^{2}x_{2}^{3} - 0.0010689x_{1}x_{2}^{4} \\&- 0.00021932x_{2}^{5} + 0.0064202x_{1}^{4}\\&+ 0.00040366x_{1}^{3}x_{2} \\&- 0.0040643x_{1}^{2}x_{2}^{2} - 0.00012829x_{1}x_{2}^{3} \\&+ 0.0022644x_{2}^{4} \\&+ 0.03111x_{1}^{3} - 0.0008091x_{1}^{2}x_{2}\\&- 0.0020231x_{1}x_{2}^{2} \\&+ 0.001224x_{2}^{3} + 0.034594x_{1}^{2} - 0.0031531x_{1}x_{2}\\&+ 0.0050539x_{2}^{2}. \\ \end{aligned}$$

For point (6,-6), \(\gamma =1.0014,\) and

$$\begin{aligned} V= & {} 0.00034639x_{1}^{6} + 1.4702\times 10^{-5}x_{1}^{5}x_{2} \\&+ 0.0022435x_{1}^{4}x_{2}^{2} \\&+0.00051484x_{1}^{3}x_{2}^{3} + 0.0013379x_{1}^{2}x_{2}^{4}\\&+ 0.00017818x_{1}x_{2}^{5} \\&+ 0.00094429x_{2}^{6} + 0.0034406x_{1}^{5}\\&+ 0.00016752x_{1}^{4}x_{2} \\&+0.0034072x_{1}^{3}x_{2}^{2} - 0.00059315x_{1}^{2}x_{2}^{3}\\&+ 0.00031562x_{1}x_{2}^{4} \\&+ 0.00045504x_{2}^{5} + 0.0062919x_{1}^{4} \\&+ 0.00049161x_{1}^{3}x_{2} \\&- 0.0054393x_{1}^{2}x_{2}^{2} + 0.0016782x_{1}x_{2}^{3}\\&+ 0.0024157x_{2}^{4} \\&- 0.031493x_{1}^{3} - 0.0010251x_{1}^{2}x_{2}\\&+ 0.0046324x_{1}x_{2}^{2} \\&- 0.0011864x_{2}^{3} + 0.037281x_{1}^{2}\\&- 0.0043478x_{1}x_{2}\\&+ 0.0057891x_{2}^{2}. \end{aligned}$$

Similar, for system (21), by setting \(Q = diag[1\ 1\ 1]\), P can be obtained as follow

$$ \left[ \begin{matrix} 0.15073&{} 0.0187315 &{} -0.0187315 \\ 0.0187315&{} 0.14423 &{} 0 \\ -0.0187315&{} 0 &{} 0.28846 \end{matrix} \right] $$

\(V=0.15073x^{2} + 0.037463xy - 0.037463xz + 0.28846y^{2} + 0.28846z^{2}\), and \(\gamma =0.2890.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, C., He, Z. et al. Estimating and enlarging the region of attraction of multi-equilibrium points system by state-dependent edge impulses. Nonlinear Dyn 103, 2421–2436 (2021). https://doi.org/10.1007/s11071-021-06259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06259-9

Keywords

Navigation