Skip to main content
Log in

Control on nanostructured quaternary Ti–Al–O–B composite synthesized via electrospinning method, from nanoparticles to nanowhiskers

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The nanostructured powder of multicomponent oxides, borides, and borates is widely used due to its high hardness, corrosion resistance, high melting point, insulating, and abrasive. In the present work, the effect of boron content on the morphology of electrospun multicomponent oxide, boride, and borate nanostructures in a quaternary Ti–Al–O–B system was investigated. Different molar ratios of B/(Ti + Al) (0.8, 1.6, and 2.4) were employed and evaluated. Imaging with the field emission scanning electron microscope (FESEM) and the transmission electron microscope (TEM) revealed that after one hour of thermal treatment at 1100 °C, the hybrid electrospun nanofibers (NFs) in the fibrous platform transformed into nanoparticles (NPs), nano-needles, and nano-whiskers at B/(Ti + Al) molar ratios of 0.8, 1.6, and 2.4, respectively. The binding energies were investigated by X-ray photoelectron spectroscopy (XPS), whereas the phase study was conducted via the X-ray diffraction (XRD) technique. The results confirmed the formation of nanostructured ceramic powder platforms composed of multiple components, namely oxides (e.g., B-doped TiO2; Al2O3), borides (TiB, TiB2, Ti2B5, TiB12, and AlB2), and borates (TiBO3; Al18B4O33). Simultaneous thermal analysis (STA) of the Ti–Al–O–B mats indicated that the borides and borates formed consecutively at temperatures above 800 °C through reactions involving molten B2O3. We found that the obtained NPs were well arranged and sintered together throughout the fibers.

Highlights

  • Electrospinning method for fabrication of nanoparticles, nano-needles, and nano-whiskers

  • Oxides, borides, and borates in the quad system of Ti–Al–O–B were formed.

  • This study investigates comprehensively by XPS, TEM, EDS, XRD, STA, and FESEM techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xin Y, Takeuchi Y, Hattori M, Shirai T (2019) Enhanced electrical conductivity of alumina/nano-carbon ceramic composite via iodine impregnation of gel-casted alumina body and reductive sintering. J Eur Ceram Soc 39(14):4440–4444. https://doi.org/10.1016/j.jeurceramsoc.2019.06.002

    Article  CAS  Google Scholar 

  2. Mazaheri Y, Meratian M, Emadi R, Najarian AR (2013) Comparison of microstructural and mechanical properties of Al–TiC, Al–B4C and Al–TiC–B4C composites prepared by casting techniques. Mat Sci Eng A Struct 560:278–287. https://doi.org/10.1016/j.msea.2012.09.068

    Article  CAS  Google Scholar 

  3. Wu C, Li Y (2020) AlN-induced reinforcement of nano-amorphous B–C–N compound for TiB2–B4C ceramic composite. J Alloy Compd 831(5):154074. https://doi.org/10.1016/j.jallcom.2020.154074

    Article  CAS  Google Scholar 

  4. Yin T, Jiang B, Su Z, Huang Q (2018) Effects of mannitol on the synthesis of ultra-fine ZrB2 powders. J Sol-Gel Sci Technol 85:41–47. https://doi.org/10.1007/s10971-017-4514-9

    Article  CAS  Google Scholar 

  5. Du J, Sanders AP, Jindal V, Chandran KSR (2016) Rapid in situ formation and densification of titanium boride (TiB) nano-ceramic via transient liquid phase in electric field activated sintering. Scr Mater 123:95–99. https://doi.org/10.1016/j.scriptamat.2016.06.010

    Article  CAS  Google Scholar 

  6. Salahi E, Esfahani H, Mobasherpour I, Bijarchi MA, Taheri M (2014) Sintering behavior and mechanical properties of alumina/zirconia multilayers composite via nano-powder processing. Ceram Int 40:2717–2722. https://doi.org/10.1016/j.ceramint.2013.10.051

    Article  CAS  Google Scholar 

  7. Song HS, Zhang J, Lin J, Liu SJ, Luo JJ, Huang Y, Elssfah EM, Elsanousi A, Ding XX, Gao JM, Tang Chengcun (2007) Coating aluminum borate (Al18B4O33) nanowire webs with BN. J Phys Chem C 111:1136–1139. https://doi.org/10.1021/jp067393u

    Article  CAS  Google Scholar 

  8. Lepakova OK, Raskolenko LG, Maksimov YUM (2000) Titanium borides prepared by self-propagating high-temperature synthesis. J Inorg Mater 36(6):568–575. 1685/00/3606-0568525.00

    Article  CAS  Google Scholar 

  9. Sarma B, Tikekar NM, Chandran KSRavi (2012) Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium Ceram Int 38:6795–6805. https://doi.org/10.1016/j.ceramint.2012.05.077

    Article  CAS  Google Scholar 

  10. Moscicki T, Psiuk R, Słomińska H, Levintant-Zayonts N, Garbiec D, Pisarek M, Bazarnik P, Nosewicz S, Chrzanowska-Giżyńsk J (2020) Influence of overstoichiometric boron and titanium addition on the properties of RF magnetron sputtered tungsten borides. Surf Coat Technol 390:125689. https://doi.org/10.1016/j.surfcoat.2020.125689

    Article  CAS  Google Scholar 

  11. Mishra SK, Gokuul V, Paswan S (2014) Alumina-titanium diboride in situ composite by self-propagating high-temperature synthesis (SHS) dynamic compaction: effect of compaction pressure during synthesis. Int J Refract Met H 43:19–24. https://doi.org/10.1016/j.ijrmhm.2013.10.018

    Article  CAS  Google Scholar 

  12. Ebrahimi A, Esfahani H, Fattah-alhosseini A, Imantalab O (2019) Electrochemical properties of commercially pure Ti with TiB/TiB2 coatings in Hanks balanced salt solution. J Mater Eng Perform 28:1456–1468. https://doi.org/10.1007/s11665-019-03930-6

    Article  CAS  Google Scholar 

  13. Masanta M, Shariff SM, Choudhury ARoy (2016) Microstructure and properties of TiB2–TiC–Al2O3 coating prepared by laser assisted SHS and subsequent cladding with micro-/nano-TiO2 as precursor constituent. Mater Des 90:307–317. https://doi.org/10.1016/j.matdes.2015.10.135

    Article  CAS  Google Scholar 

  14. Morsi K, Patel VV (2007) Processing and properties of titanium–titanium boride (TiBw) matrix composites—a review. J Mater Sci 42:2037–2047. https://doi.org/10.1007/s10853-006-0776-2

    Article  CAS  Google Scholar 

  15. Jiang Z, Rhine WE (1993) Preparation of titanium diboride from the borothermic reduction of TiO2, TiOx(OH)y, Ti(O-n-Bu)4-derived polymers. J Eur Ceram Soc 12:403–411. https://doi.org/10.1016/0955-2219(93)90011-F

    Article  CAS  Google Scholar 

  16. Hernández MF, Suárez G, Cipollone M, Conconi MS, Aglietti EF, Rendtorff NM (2017) Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceram Int 43(2):2188–2195. https://doi.org/10.1016/j.ceramint.2016.11.002

    Article  CAS  Google Scholar 

  17. Hernández MF, Suárez G, Cipollone M, Aglietti EF, Rendtorff NM (2017) Mechanical behavior and microstructure of porous needle: aluminum borate (Al18B4O33) and Al2O3-Al18B4O33 composites. Ceram Int 43:11759–11765. https://doi.org/10.1016/j.ceramint.2017.06.011

    Article  CAS  Google Scholar 

  18. Esfahani H, Abdollahzadeh A, Dabir F, Samar MahsaRasouli (2020) Enhanced surface protection of in-738lc ni based alloy by metallic borides and aluminium borate coating via short time powder pack method. Prot Met Phys Chem Surf 56(3):567–574. https://doi.org/10.1134/S2070205120030144

    Article  CAS  Google Scholar 

  19. Wang Y, Feng J, Wang Z, Song X, Cao J (2016) Joining of Al2O3 by epitaxial growth of aluminum borate whiskers for high-temperature applications. Mater Lett 163:231–235. https://doi.org/10.1016/j.matlet.2015.10.079

    Article  CAS  Google Scholar 

  20. Guo D, Zhao Y, Ling C, Li J, Jin H (2018) Vacuum freeze-drying assisted preparation of spherical AlB2 powders with ultrafine microstructure. Ceram Int 44(6):6451–6455. https://doi.org/10.1016/j.ceramint.2018.01.040

    Article  CAS  Google Scholar 

  21. Cheng Ding J, Fei Zhang T, Moon Yun J, Ho Kim K, Wang QMin (2018) Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering. Surf Coat Technol 344:441–448. https://doi.org/10.1016/j.surfcoat.2018.03.026

    Article  Google Scholar 

  22. Yang J, Wang Q, Wang T (2017) A novel synthesis route of titania–alumina composite aerogels with potassium titanate as the precursor. J Sol-Gel Sci Technol 83:527–536. https://doi.org/10.1007/s10971-017-4433-9

    Article  CAS  Google Scholar 

  23. Rebholz C, Leyland A, Schneider JM, Voevodin AA, Matthews A (1999) Structure, hardness and mechanical properties of magnetron sputtered titanium–aluminium boride films. Surf Coat Technol, 120– 121:412–417. https://doi.org/10.1016/S0257-8972(99)00490-9

    Article  Google Scholar 

  24. Nedfors N, Mráz S, Palisaitis J, Persson POÅ, Lind H, Kolozsvari S, Schneider JM, Rosen J (2019) Influence of the Al concentration in Ti-Al-B coatings on microstructure and mechanical properties using combinatorial sputtering from a segmented TiB2/AlB2 target. Surf Coat Technol 364:89–98. https://doi.org/10.1016/j.surfcoat.2019.02.060

    Article  CAS  Google Scholar 

  25. Ghugare AD, Dhanalakshmi R, Vinu R (2020) Preparation and characterization of nanoboron for slurry fuel applications. Adv Powder Technol 31:1851–1867. https://doi.org/10.1016/j.apt.2020.02.018

    Article  CAS  Google Scholar 

  26. Liang D, Xiao R, Liu J, Wang Y (2019) Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend. Aerosp Sci Technol 84:1081–1091. https://doi.org/10.1016/j.ast.2018.11.046

    Article  Google Scholar 

  27. Adil S, Murty BS (2019) Effect of milling on the oxidation kinetics of aluminium+boron mixture and nanocrystalline aluminium boride (AlB12). Thermochim Acta 678:178306. https://doi.org/10.1016/j.tca.2019.178306

    Article  CAS  Google Scholar 

  28. Buchilin NV, Stroganova EE, Mikhailenko NYU, Sarkisov PD, Paleari A (2013) Crystallization-controlled pore retention in calcium-phosphate glassceramics from powder sintering of CaO–P2O5–B2O3–Al2O3–TiO2–ZrO2 glass. J Non-Cryst Solids 373–374:42–50. https://doi.org/10.1016/j.jnoncrysol.2013.04.037

    Article  CAS  Google Scholar 

  29. Tauch D, Russel C (2007) Glass-ceramics in the system BaO/TiO2(ZrO2)/Al2O3/B2O3 and their thermal expansion. J Non-Cryst Solids 353:2109–2114. https://doi.org/10.1016/j.jnoncrysol.2007.03.016

    Article  CAS  Google Scholar 

  30. Tautkus S, Ishikawa K, Ramanauskas R, Kareiva A (2020) Zinc and chromium co-doped calcium hydroxyapatite: sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations. J Solid State Chem 284:121202. https://doi.org/10.1016/j.jssc.2020.121202

    Article  CAS  Google Scholar 

  31. Biedunkiewicz A (2011) Manufacturing of ceramic nanomaterials in Ti–Si–C–N system by sol–gel method. J Sol-Gel Sci Technol 59:448–455. https://doi.org/10.1007/s10971-010-2237-2

    Article  CAS  Google Scholar 

  32. Altaf AA, Ahmed M, Hamayun M, Kausar S, Waqar M, Badshah A (2020) Titania nano-fibers: a review on synthesis and utilities. Inorg Chim Acta 501:119268. https://doi.org/10.1016/j.ica.2019.119268

    Article  CAS  Google Scholar 

  33. Someswararao MV, Pradeep D, Dubey RS, Subbarao PSV (2019) Experimental investigation of electrospun titania nanofibers: an applied voltage influence. Mater Today Proc 18:384–388. https://doi.org/10.1016/j.matpr.2019.06.315

    Article  CAS  Google Scholar 

  34. Esfahani H, Jose R, Ramakrishna S (2017) Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials 10(11):1238. https://doi.org/10.3390/ma10111238

    Article  CAS  Google Scholar 

  35. Osali S, Esfahani H, Dabir F, Tajaslan P (2019) Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films. Solid State Sci 98:106038. https://doi.org/10.1016/j.solidstatesciences.2019.106038

    Article  CAS  Google Scholar 

  36. Prabhakaran MP, Zamani M, Felice B, Ramakrishna S (2015) Electrospraying technique for the fabrication of metronidazole contained PLGA particles and their release profile. Mat Sci Eng C Mater 56(1):66–73. https://doi.org/10.1016/j.msec.2015.06.018

    Article  CAS  Google Scholar 

  37. Dai H, Gong J, Kim H, Lee D (2002) A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 13:674–677. https://doi.org/10.1088/0957-4484/13/5/327

    Article  CAS  Google Scholar 

  38. Ozdemir M, Celik E, Cocen U (2013) Effect of viscosity on the production of alumina borate nanofibers via electrospinning. Mater Technol 47:735–738

    CAS  Google Scholar 

  39. Song X, Liu W, Xu S, Wang J, Liu B, Cai Q, Tang S, Ma Y (2018) Microstructure and elastic modulus of electrospun Al2O3-SiO2-B2O3 composite nanofibers with mullite-type structure prepared at elevated temperatures. J Eur Ceram Soc 38(1):201–210. https://doi.org/10.1016/j.jeurceramsoc.2017.08.007

    Article  CAS  Google Scholar 

  40. Liu J, Blanpain B, Wollants P, XPS A (2008) Study of atmospheric plasma sprayed TiB2 coatings. Key Eng Mater 368-372:1347–1350. https://doi.org/10.4028/www.scientific.net/KEM.368-372.1347

    Article  CAS  Google Scholar 

  41. Yuan J, Zhang Z, Yang M, Guo F, Men X, Liu W (2017) TiB2 reinforced hybrid-fabric composites with enhanced thermal and mechanical properties for high-temperature tribological applications. Tribol Int 115:8–17. https://doi.org/10.1016/j.triboint.2017.05.006

    Article  CAS  Google Scholar 

  42. Chichi SAM, Hamidon MN, Ertugrul M, Mamat MS, Jaafar H, Aris N (2020) Influence of B2O3 addition on the properties of TiO2 thick film at various annealing temperatures for hydrogen sensing. J Elec Mater 49:3340–3349. https://doi.org/10.1007/s11664-020-08059-0

    Article  CAS  Google Scholar 

  43. Wang J, Sha L, Yang Q, Wang Y, Yang D (2005) Synthesis of aluminium borate nanowires by sol–gel method. Mater Res Bull 40:1551–1557. https://doi.org/10.1016/j.materresbull.2005.04.016

    Article  CAS  Google Scholar 

  44. Raghavan V (2005) Al-B-Ti (Aluminum-Boron-Titanium). J Phase Equilib Diff 26(2):173–174. https://doi.org/10.1361/15477030523058

    Article  CAS  Google Scholar 

  45. Duan XF, Wang JF, Lieber CM (2000) Synthesis and optical properties of gallium arsenide nanowires. Appl Phys Lett 76:1116. https://doi.org/10.1063/1.125956

    Article  CAS  Google Scholar 

  46. Zhang E, Zeng G, Zeng S (2002) Oxidation behavior of in situ TiB short fibre reinforced Ti-6Al-1.2B alloy in air. J Mater Sci 37:4063–4071. https://doi.org/10.1023/A:1020019431992

    Article  CAS  Google Scholar 

  47. Zhang J, Meng F, Todd RI, Fu Z (2010) The nature of grain boundaries in alumina fabricated by fast sintering. Scr Mater 62(9):658–661. https://doi.org/10.1016/j.scriptamat.2010.01.019

    Article  CAS  Google Scholar 

  48. Zhou M, Sui Y, Jiang Y (2020) Growth behavior of aluminum borate whiskers on zirconia toughened alumina (ZTA) particle surface. Ceram Int 46(7):8839–8844. https://doi.org/10.1016/j.ceramint.2019.12.128

    Article  CAS  Google Scholar 

  49. Samsonov GV, Kovenskaya II BA (1977) The nature of the chemical bond in borides. In: Matkovich VI (eds.) Boron and refractory borides. Springer, Berlin, Heidelberg

    Google Scholar 

  50. Xu SC, Wang LD, Zhao PT, Li WL, Xue ZW, Fei WD (2012) Fiber texture evolution of hot-rolled aluminum matrix composite reinforced by aluminum borate whisker. Mat Sci Eng A Struct 533:82–86. https://doi.org/10.1016/j.msea.2011.11.038

    Article  CAS  Google Scholar 

  51. Mayrhofer PH, Mitterer C, Wen JG, Greene JE, Petrov I (2005) Self-organized nanocolumnar structure in superhard TiB2 thin films. Appl Phys Lett 86:131909. https://doi.org/10.1063/1.1887824

    Article  CAS  Google Scholar 

  52. Hu B, Zhang Q, Niu L, Liu J, Rao J, Zhou X (2015) Microsphere assembly of boron-doped Rutile TiO2 nanotubes with enhanced photoelectric performance. J Mater Sci Mater Electron 26:8915–8921. https://doi.org/10.1007/s10854-015-3573-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Journal of Sol-Gel Science and Technology. Z.G.: writing—original draft preparation, investigation. H.E.: conceptualization, writing—original draft preparation, validation, writing—review and editing, supervision. Y.M.: conceptualization, review and editing.

Corresponding author

Correspondence to Hamid Esfahani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, Z., Esfahani, H. & Mazaheri, Y. Control on nanostructured quaternary Ti–Al–O–B composite synthesized via electrospinning method, from nanoparticles to nanowhiskers. J Sol-Gel Sci Technol 98, 127–137 (2021). https://doi.org/10.1007/s10971-021-05487-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05487-0

Keywords

Navigation