Skip to main content
Log in

Artificial aquifer recharge and pumping: transient analytical solutions for hydraulic head and impact on streamflow rate based on the spatial superposition method

Pompage et recharge artificielle des aquifères: solutions analytiques de la piézométrie et de l’impact sur un cours d’eau basée sur une méthode de superposition spatiale

Recarga artificial y bombeo del acuífero: soluciones analíticas transitorias para la carga hidráulica y el impacto en la velocidad de flujo de la corriente, basadas en el método de superposición espacial

人工含水层补给和开采:基于空间叠加法的水头非稳定解析解及其对河流速率的影响

Recarga artificial de aquíferos e bombeamento: soluções analíticas transientes para carga hidráulica e impacto na taxa de fluxo baseado no método de superposição espacial

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The behaviour of transient groundwater mounds in response to infiltration from surface basins has been studied for decades, but some common settings still lack analytical solutions. It has been shown that applying mathematical integration to the line-sink solution developed by Hantush in the 1960s for pumping an unconfined aquifer, considering recharge over the surface of a defined area, is identical to his solution for groundwater mounding below a rectangular basin. This implies that the superposition principle can, generally, be used to directly include pumping wells, as well as aquifer boundaries, to derive a unique solution. Moreover, other line-sink solutions can be used with a spatial superposition method for addressing a variety of hydrogeological settings, provided the behaviour of the relevant partial differential equations is linear. Based on this principle and on existing line-sink solutions, several analytical solutions are proposed that are able to consider a rectangular recharging area and a pumping well in an unconfined aquifer: (1) near a stream, (2) between a stream and a no-flow boundary, with and without the influence of natural recharge, (3) near a stream that partially penetrates an aquifer and (4) for a multi-layer aquifer. For cases including streams, transient solutions of the impact on streamflow rate are also presented. The proposed analytical solutions will be of practical use for managed aquifer recharge, in particular the design of structures for artificially recharging an aquifer, possibly pumped by one or several wells.

Résumé

Le comportement des dômes piézométriques souterrains, en transitoire, suite à l’infiltration d’eau par des bassins de recharge artificielle est étudié depuis des décennies. Cependant, certaines configurations n’ont pas été traitées par des solutions analytiques. Il est d’abord rappelé et montré que l’intégration de la solution développée pour un pompage dans un aquifère libre par Hantush dans les années 1960 sur une surface rectangulaire est identique à sa solution décrivant l’évolution du dôme piézométrique dans l’aquifère sous un bassin de recharge de forme rectangulaire. Ce constat implique que le principe de superposition peut, en général, être utilisé pour inclure directement les puits de pompage, ainsi que les limites des aquifères, dans une unique solution. De plus, d’autres solutions de type puits peuvent être utilisées avec une méthode de superposition spatiale pour traiter diverses situations hydrogéologiques, à condition que le comportement des équations différentielles partielles correspondantes soit linéaire. Sur la base de ce principe et à partir de solutions de type puits existantes, plusieurs solutions analytiques sont proposées. Ces solutions considèrent une zone de recharge rectangulaire et un puits de pompage dans un aquifère libre: (1) près d’un cours d’eau, (2) entre un cours d’eau et une limite étanche, avec et sans influence de la recharge naturelle, (3) près d’un cours d’eau qui n’incise que partiellement l’aquifère et (4) dans un aquifère multicouche. Pour les cas avec cours d’eau, des solutions calculant l’impact sur le débit du cours d’eau, en transitoire, sont également présentées. Ces solutions analytiques sont utiles pour la gestion de la recharge d’aquifères, éventuellement pompés par un ou plusieurs puits, en particulier pour la conception des structures de recharge.

Resumen

El comportamiento de los acuíferos transitorios en respuesta a la infiltración desde las cuencas de superficie se ha estudiado durante décadas, pero algunos escenarios comunes todavía carecen de soluciones analíticas. Se ha demostrado que la aplicación de la integración matemática a la solución de la línea de flotación desarrollada por Hantush en el decenio de 1960 en relación con el bombeo de un acuífero no confinado, considerando la recarga sobre la superficie de un área definida, es idéntica a su solución para las aguas subterráneas que se acumulan debajo de una cuenca rectangular. Esto implica que el principio de superposición puede, en general, utilizarse para incluir directamente los pozos de bombeo, así como los límites del acuífero, para derivar una solución única. Además, pueden utilizarse otras soluciones de sumideros lineales con un método de superposición espacial para abordar una variedad de escenarios hidrogeológicos, siempre que el comportamiento de las ecuaciones diferenciales parciales pertinentes sea lineal. Sobre la base de este principio y de las soluciones de sumidero lineal existentes, se proponen varias soluciones analíticas capaces de considerar un área rectangular de recarga y un pozo de bombeo en un acuífero no confinado: (1) próximo a un curso de agua, (2) entre un curso de agua y un límite sin flujo, con y sin la influencia de la recarga natural, (3) próximo a un curso de agua que penetra parcialmente en un acuífero y (4) para un acuífero multicapa. Para los casos en que se incluyen las aguas fluviales, también se presentan soluciones transitorias del impacto en la cantidad de flujo de las aguas superficiales. Las soluciones analíticas propuestas serán de utilidad práctica para la gestión de la recarga del acuífero, en particular el diseño de estructuras para la recarga artificial de un acuífero, posiblemente bombeadas por uno o varios pozos.

摘要

几十年来,研究了非稳定地下水丘响应地表盆地入渗的行为,但一些常见的问题仍然缺乏解析解。研究表明,将应用数学积分到汉图什(Hantush)在1960年代开发的用于抽取潜水含水层的线汇解时,考虑了在有限区域表层的补给,这与他对矩形盆地下方的地下水丘的解析解类似。这意味着通常可以使用叠加原理直接包括抽水井以及含水层边界,以得出唯一的解析解。此外,如果相关偏微分方程是线性的,则其他线汇解可与空间叠加方法一起使用,以解决各种水文地质问题。基于此原理和现有的线汇解,提出了几种能够考虑矩形补给面积和潜水含水层抽水井的解决解:(1)在河流附近,(2)考虑和不考虑天然入渗时的河流与隔水边界之间;(3)在非完整河附近;(4)多层含水层。对于包括河流的情况,还提出了对河流流速影响的非稳定解析解。提出的解决解将用于含水层回补,特别是用于人工补给含水层(可能由一口或多口井抽水)的结构设计。

Resumo

O comportamento de montículos (mounds) transientes de águas subterrâneas em resposta à infiltração de bacias de superfície tem sido estudado por décadas, mas alguns cenários comuns ainda carecem de soluções analíticas. Foi demonstrado que a aplicação de integração matemática à solução de linha de injeção desenvolvida por Hantush em 1960 para o bombeamento de um aquífero não confinado, considerando a recarga sobre a superfície de uma área definida, é idêntica à sua solução para mounds de águas subterrâneas abaixo de uma bacia retangular. Isso implica que o princípio da superposição pode, geralmente, ser usado para incluir diretamente poços de bombeamento, bem como limites de aquíferos, para derivar a uma solução única. Além disso, outras soluções de linha injeção podem ser usadas com um método de superposição espacial para abordar uma variedade de cenários hidrogeológicos, desde que o comportamento das equações diferenciais parciais relevantes seja linear. Baseado neste princípio e nas soluções existentes para linha de injeção, são propostas várias soluções analíticas capazes de considerar uma área de recarga retangular e um poço de bombeamento em um aquífero não confinado: (1) próximo a um riacho, (2) entre um riacho e um limite sem fluxo, com e sem a influência da recarga natural, (3) próximo a um riacho que penetra parcialmente um aquífero e (4) para um aquífero multicamada. Para casos que incluem fluxos, soluções transientes do impacto na taxa de fluxo também são apresentadas. As soluções analíticas propostas serão de uso prático para a recarga gerenciada de aquíferos, em particular no projeto de estruturas para recarga artificial de um aquífero, possivelmente bombeadas por um ou vários poços.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aish AM (2010) Simulation of groundwater mound resulting from proposed artificial recharge of treated sewage effluent case study: Gaza waste water treatment plan, Palestine. Geologia Croatica, Zagreb, Croatia, pp 62–73. https://doi.org/10.4154/gc.2010.04

  • Baumann P (1952) Groundwater movement controlled through spreading. Trans Am Soc Civ Eng 117:1024–1060

    Article  Google Scholar 

  • Bhuiyan C (2015) An approach towards site selection for water banking in unconfined aquifers through artificial recharge. J Hydrol 523:465–474. https://doi.org/10.1016/j.jhydrol.2015.01.052

    Article  Google Scholar 

  • Boisson A, Baïsset M, Alazard M, Perrin J, Villesseche D, Dewandel B, Kloppmann W, Chandra S, Picot-Colbeaux G, Sarah S, Ahmed S, Maréchal J-C (2014) Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures: case of a percolation tank in a crystalline aquifer in India. J Hydrol 519:1620–1633. https://doi.org/10.1016/j.jhydrol.2014.09.022

    Article  Google Scholar 

  • Bouwer H (2002) Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeol J 10:121–142. https://doi.org/10.1007/s10040-001-0182-4

    Article  Google Scholar 

  • Bruggeman GA (1999) Analytical solutions of geohydrological problems. In: Developments in water science 46. Elsevier, Amsterdam, The Netherlands, 959 pp

    Google Scholar 

  • Carleton GB (2010) Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins. US Geol Surv Sci Inv Rep 2010-5102, 64 pp

  • Dewandel B, Aunay B, Maréchal JC, Roques C, Bour O, Mougin B, Aquilina L (2014) Analytical solutions for analysing pumping tests in a sub-vertical and anisotropic fault zone draining shallow aquifers. J Hydrol 509:115–131

    Article  Google Scholar 

  • Dewandel B, Lanini S, Lachassagne P, Maréchal JC (2018) A generic analytical solution for modelling pumping tests in wells intersecting fractures. J Hydrol 559:89–99. https://doi.org/10.1016/j.jhydrol.2018.02.013

    Article  Google Scholar 

  • Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13:313–316. https://doi.org/10.1007/s10040-004-0413-6

    Article  Google Scholar 

  • Dillon PJ, Gale I, Contreras S, Pavelic P, Evans R, Ward J (2009) Managing aquifer recharge and discharge to sustain irrigation livelihoods under water scarcity and climate change. IAHS-AISH Publ 330, IAHS, Wallingford, UK, pp 1–12

  • Ferris JG, Knowles DB, Brown RH, Stallman RW (1962) Theory of aquifer tests. US Geol Surv Water Suppl Pap 69-174

  • Finnemore EJ (1995) A program to calculate ground-water mound heights. Ground Water 33:139–143

    Article  Google Scholar 

  • Ganot Y, Holtzman R, Weisbrod N, Nitzan I, Katz Y, Kurtzman D (2017) Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater. Hydrol Earth Syst Sci 21:4479–4493. https://doi.org/10.5194/hess-21-4479-2017

    Article  Google Scholar 

  • Glover RE (1960) Mathematical derivations as pertain to groundwater recharge. US Department of Agriculture Agricultural Research Service, Fort Collins, CO, 81 pp

    Google Scholar 

  • Glover RE, Balmer CG (1954) River depletion from pumping a well near a river. Trans Am Geophys Union 35(3):468–470

    Article  Google Scholar 

  • Hantush MS (1964a) Hydraulics of wells. In: Chow VT (ed) Advances in hydroscience, vol 1. Academic, San Diego

  • Hantush MS (1964b) Depletion of storage, leakage, and river flow by gravity wells in sloping sands. J Geophys Res 69(12):2551–2560

    Article  Google Scholar 

  • Hantush MS (1965) Wells near streams with semipervious beds. J Geophys Res 70(12):2829–2838

    Article  Google Scholar 

  • Hantush MS (1967) Growth and decay of groundwater-mounds in response to uniform percolation. Water Resour Res 3:227–234

    Article  Google Scholar 

  • Hunt BW (1971) Vertical recharge of unconfined aquifers. J Hydraul Div ASCE 97(HY7):1017–1030

    Article  Google Scholar 

  • Hunt B (1999) Unsteady stream depletion from ground water pumping. Ground Water 37(1):98–102

    Article  Google Scholar 

  • Hunt B (2009) Stream depletion in a two-layer leaky aquifer system. J Hydrol Eng 14(9):895–903. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000063

  • Hunt B (2014) Review of stream depletion solutions, behavior, and calculations. J Hydrol Eng 19(1):167–178. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000768

  • Hunt B, Scott D (2007) Flow to a well in a two-aquifer system. J Hydrol Eng 12(2):146–155. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(146)

  • Kacimov A, Zlotnik RV, Al-Maktoumi A, Al-Abri R (2016) Modeling of transient water table response to managed aquifer recharge: a lagoon in Muscat, Oman. Environ Earth Sci 75(4):318. https://doi.org/10.1007/s12665-015-5137-5

    Article  Google Scholar 

  • Kruseman GP, de Ridder NA (1994) Analysis and evaluation of pumping test data. ILRI publication 47, ILRI, Wageningen, The Netherlands

  • Latinopoulos P (1981) The response of groundwater on artificial recharges schemes. Water Resour Res 17(6):1712–1714

    Article  Google Scholar 

  • Latinopoulos P (1984) Periodic recharge to finite aquifers from rectangular areas. Adv Water Resour 7:137–140

    Article  Google Scholar 

  • Lee H, Koo MH, Oh S (2015) Modeling stream–aquifer interactions under seasonal groundwater pumping and managed aquifer recharge. Groundwater 57(2):216–225. https://doi.org/10.1111/gwat.12799

    Article  Google Scholar 

  • Lelièvre RF (1969) Etude de l’influence de pompages en nappes alluviales sur le régime d’étiage du réseau superficiel [Study of the influence of pumping in alluvial aquifers on the low-level flow of surface rivers]. Report BRGM 69 SGL 073 HYD, BRGM, Orleans, France, 95 pp

  • Manglik A, Rai SN, Singh RN (1997) Response of an unconfined aquifer induced by time varying recharge from a rectangular basin. Water Resour Manag 11:185–196

    Article  Google Scholar 

  • Manglik A, Rai SN, Singh RN (2004) Modelling of aquifer response to time varying recharge and pumping from multiple basins and wells. J Hydrol 292:23–29

    Article  Google Scholar 

  • Marino MA (1967) Hele-Shaw model study of the growth and decay of groundwater ridges. J Geophys Res 72(4):1195–1205

    Article  Google Scholar 

  • Marino MA (1974) Growth and decay of groundwater mounds induced by percolation. J Hydrol 22:295–301

    Article  Google Scholar 

  • Marino MA (1975) Artificial groundwater recharge, I: circular recharging area. J Hydrol 25:201–208

    Article  Google Scholar 

  • Massuel S, Perrin J, Mascre C, Mohamed W, Boisson A, Ahmed S (2014) Managed aquifer recharge in South India: what to expect from small percolation tanks in hard rock? J Hydrol 512:157–167. https://doi.org/10.1016/j.jhydrol.2014.02.062

    Article  Google Scholar 

  • Moench AF (1996) Flow to well in a water-table aquifer: an improved Laplace transform solution. Ground Water 34(4):593–596

    Article  Google Scholar 

  • Molden D, Sunada DK, Warner JW (1984) Microcomputer model of artificial recharge using Glover’s solution. Ground Water 22(1):73–79

  • Neuman SP (1975) Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour Res 11(2):329–342

  • Nicolas M, Bour O, Selles A, Dewandel B, Bailly-Comte V, Chandra S, Ahmed S, Maréchal J-C (2019) Managed aquifer recharge in fractured crystalline rock aquifers: impact of horizontal preferential flow on recharge dynamics. J Hydrol 573:717–732. https://doi.org/10.1016/j.jhydrol.2019.04.003

    Article  Google Scholar 

  • Polubarinova-Kochina PY (1977) Theory of ground water movement (in Russian). Nauka, Moscow, 665 pp

  • Rao NH, Sarma PBS (1981) Ground-water recharge from rectangular areas. Ground Water 19(3):270–274

    Article  Google Scholar 

  • Rao NH, Sarma PBS (1984) Recharge to aquifers with mixed boundaries. J Hydrol 74:43–51

    Article  Google Scholar 

  • Rai SN, Singh RN (1996) On the prediction of groundwater mound formation due to transient recharge from a rectangular area. Water Resour Manag 10:189–198

    Article  Google Scholar 

  • Rai SN, Ramana DV, Singh RN (1998) On the prediction of ground-water mound formation in response to transient recharge from a circular basin. Water Resour Manag 12:271–284

    Article  Google Scholar 

  • Rai SN, Ramana DV, Thiagarajan S, Manglik A (2001) Modelling of groundwater mound formation resulting from transient recharge. Hydrol Process 15:1507–1514. https://doi.org/10.1002/hyp.222

    Article  Google Scholar 

  • Stafford N, Che D, Mays LW (2015) Optimization model for the design of infiltration basins. Water Resour Manag 29:2789–2804. https://doi.org/10.1007/s11269-015-0970-6

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16:519–524

    Article  Google Scholar 

  • Theis CV (1941) The effect of a well on the flow of a nearby stream. Trans Am Geophys Union 22:734–738

    Article  Google Scholar 

  • Ward ND, Lough H (2011) Stream depletion from pumping a semiconfined aquifer in a two-layer leaky aquifer system. J Hydrol Eng 16(11):955–959

    Article  Google Scholar 

  • Warner JW, Molden D, Mondher C, Sunada DK (1989) Mathematical analysis of artificial recharge from basins. Water Resour Bull 25(2):401–411

    Article  Google Scholar 

  • Yihdego Y (2017) Simulation of groundwater mounding due to irrigation practice: case of wastewater reuse engineering design. Hydrology 4(19):1–10. https://doi.org/10.3390/hydrology4020019

    Article  Google Scholar 

  • Zlotnik VA, Kacimov A, Al-Maktoumi A (2017) Estimating groundwater mounding in sloping aquifers for managed aquifer recharge. Ground Water 55(6):797–810. https://doi.org/10.1111/gwat.12530

    Article  Google Scholar 

  • Zomorodi K (2005) Simplified solutions for groundwater mounding under stormwater infiltration facilities. Proceedings of the American Water Resources Association 2005 Annual Water Resources Conference, November 7–10, 2005, Seattle, Washington, DC, 4 pp

Download references

Acknowledgements

The two anonymous journal referees are thanked for their useful remarks and comments that improved the quality of the paper. The authors are grateful to Dr. H.M. Kluijver for revising the final version of the English text. A patent application has been deposited on parts of this work (French National Institute of Industrial Property).

Funding

This study was conducted by BRGM, and was funded by the internal BRGM RDI Recharging project and the ‘Dem’Eaux Roussillon’ project funded by BRGM, European Funds for Regional Development, Rhone Mediterranean and Corsica Water Agency, Communauté urbaine Perpignan Méditerranée Métropole and the Pyrenées Orientales Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Dewandel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1

Groundwater flow in the case of groundwater mounding for a rectangular basin with a uniform percolation rate (Fig. 2) is defined by the following nonlinear Boussinesq equation:

$$ \frac{\partial }{\partial x}\left( Kh\frac{\partial h}{\partial x}\right)+\frac{\partial }{\partial y}\left( Kh\frac{\partial h}{\partial y}\right)+R=S\frac{\partial h}{\partial t} $$
(21)

With K the hydraulic conductivity of the aquifer, S the aquifer storativity and R the recharge rate.

Boundary conditions are h(x, y, 0) = h0; h(±∞, y, t) = h(x, ±∞, t) = h0.

Defining Z = h2 − h02, and assuming a homogeneous and isotropic aquifer (= constant), Hantush (1967) obtained the following approximate partial differential equation:

$$ \frac{\partial^2Z}{\partial {x}^2}+\frac{\partial^2Z}{\partial {y}^2}+\frac{2R}{K}=\frac{1}{\nu}\frac{\partial Z}{\partial t} $$
(22)

with h – h0 < 0.5h0, \( \nu =\frac{K\overline{b}}{S} \), \( \overline{b} \) is a constant of linearization \( \overline{b}=\frac{1}{2}\left({h}_0+{h}_t\right) \).

Boundary conditions: Z(x, y, 0) = 0; Z(±∞, y, t) = Z(x, ±∞, t) = 0; \( \frac{\partial Z\left(0,y,t\right)}{\partial x}=\frac{\partial Z\left(x,0,t\right)}{\partial y}=0 \)

Hantush’s approximate partial differential equation for a well pumping an unconfined, infinite and horizontal aquifer (Hantush 1964a, b, 1965).

$$ \frac{\partial^2Z}{\partial {x}^2}+\frac{\partial^2Z}{\partial {y}^2}=\frac{1}{\nu}\frac{\partial Z}{\partial t} $$
(23)

Z = h2 − h02, with h0– h < 0.5h0

Boundary conditions:

Z(x, y, 0) = 0; Z(±∞, y, t) = Z(x, ±∞, t) = 0; \( \underset{r\to 0}{\mathrm{Lim}}r\frac{\partial Z}{\partial r}=\frac{Q_{\mathrm{Pump}}}{\uppi K} \)

QPump is the pumping rate (<0) and r the distance to the pumping well.

Appendix 2

Integration of Eq. (1) over a rectangular surface of dimensions 2xL × 2yL and considering that the recharge rate, R, is uniformly distributed over the rectangular recharging area (2xL × 2yL), i.e. \( R=\frac{Q_{\mathrm{Rech}}}{4{x}_{\mathrm{L}}{y}_{\mathrm{L}}} \), Eq. (2) becomes

$$ {Z}_{\mathrm{Rech}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\frac{R}{2\uppi K}\underset{-{x}_{\mathrm{L}}}{\overset{+{x}_{\mathrm{L}}}{\int }}\underset{-{y}_{\mathrm{L}}}{\overset{+{y}_{\mathrm{L}}}{\int }}\mathrm{W}\left[\frac{{\left(x-{x}_{\mathrm{o}\mathrm{bs}}\right)}^2+{\left(y-{y}_{\mathrm{o}\mathrm{bs}}\right)}^2}{4\nu t}\right] dx\ dy $$
(24)

Then, because of the properties of exponential integrals [\( \mathrm{W}\left(\frac{a}{t}\right)=\underset{a/t}{\overset{\infty }{\int }}\frac{{\mathrm{e}}^{-y}}{y} d y=\underset{0}{\overset{t}{\int }}\frac{{\mathrm{e}}^{-a/\tau }}{\tau } d\tau \)], it follows that

$$ {Z}_{\mathrm{Rech}}\left({x}_{\mathrm{obs}},{y}_{\mathrm{obs}},t\right)=\frac{R}{2\uppi K}\underset{-{x}_{\mathrm{L}}}{\overset{+{x}_{\mathrm{L}}}{\int }}\underset{-{y}_{\mathrm{L}}}{\overset{+{y}_{\mathrm{L}}}{\int }}\underset{0}{\overset{t}{\int }}\frac{{\mathrm{e}}^{\frac{-{\left(x-{x}_{\mathrm{obs}}\right)}^2-{\left(y-{y}_{\mathrm{obs}}\right)}^2}{4\nu \tau}\kern0.5em }}{\tau } d\tau dxdy\kern0.5em $$
(25)

According to the Fubini theorem (i.e. t, x and y are independent variables), the order of integration can be inverted, resulting in:

Performing a change of variable \( \vartheta =\frac{\left(x-{x}_{\mathrm{obs}}\right)}{2\sqrt{\nu t}} \), the (a) term in Eq. (26) can be rewritten as:

$$ \underset{-{x}_{\mathrm{L}}}{\overset{+{x}_{\mathrm{L}}}{\int }}\frac{{\mathrm{e}}^{\frac{-{\left(x-{x}_{\mathrm{obs}}\right)}^2}{4\nu \tau}}}{\sqrt{\tau }} d x=\underset{-\left({x}_{\mathrm{L}}+{x}_{\mathrm{obs}}\right)/2\sqrt{\nu \tau}}{\overset{\left({x}_{\mathrm{L}}-{x}_{\mathrm{obs}}\right)/2\sqrt{\nu \tau}}{\int }}2\sqrt{\nu }\ {\mathrm{e}}^{-{\vartheta}^2} d\vartheta $$
(27)

The right side of Eq. (27) can be separated into two terms related to the Erf function [\( \underset{a}{\overset{b}{\int }}{\mathrm{e}}^{-{u}^2} du=\frac{\sqrt{\uppi}}{2}{\left[\mathrm{Erf}(u)\right]}_a^b=\frac{\sqrt{\pi }}{2}\left(\mathrm{Erf}(b)-\mathrm{Erf}(a)\right) \)], therefore:

$$ \underset{-\left({x}_{\mathrm{L}}+{x}_{\mathrm{obs}}\right)/2\sqrt{\nu \tau}}{\overset{\left({x}_{\mathrm{L}}-{x}_{\mathrm{obs}}\right)/2\sqrt{\nu \tau}}{\int }}2\sqrt{\nu }\ {\mathrm{e}}^{-{\vartheta}^2} d\vartheta =\sqrt{\uppi \nu}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+{x}_{\mathrm{obs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-{x}_{\mathrm{obs}}}{2\sqrt{\nu \tau}}\right)\right] $$
(28)

Changing the variable \( \vartheta^{\prime }=\frac{\left(y-{y}_{\mathrm{obs}}\right)}{2\sqrt{\nu t}} \) in term (b) in Eq. (26), and using the same procedure as described before, the (b) term can be rewritten as

$$ \underset{-{y}_{\mathrm{L}}}{\overset{+{y}_{\mathrm{L}}}{\int }}\frac{{\mathrm{e}}^{\frac{-{\left(y-{y}_{\mathrm{obs}}\right)}^2}{4\nu t}}}{\sqrt{\tau }} dx=\sqrt{\uppi \nu}\left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{obs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{obs}}}{2\sqrt{\nu \tau}}\right)\right] $$
(29)

Finally, combining Eqs. (28) and (29), and since \( \nu =\frac{K\overline{b}}{S} \), the following is obtained:

$$ {Z}_{\mathrm{Rech}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\kern0.5em \frac{R\overline{b}}{2S}\underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\kern0.5em \times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau $$
(30)

Equation (30) demonstrates that the well solution for an unconfined and isotropic aquifer (Hantush 1964a, 1965) integrated over a rectangular plane is exactly the same as Hantush’s analytical solution for a rectangular recharging area with a uniform distribution of the recharge flux (Eq. 13 in Hantush 1967).

Appendix 3

The hydraulic-head solution for a rectangular recharging area and a pumping well between two parallel boundaries (constant head or no-flow boundary).

xw and yw are coordinates of the pumping well, d is the distance between the centre of the recharging area and the stream. 2 L is the distance between both limits. x = y = 0 at the centre of the recharging area. \( \nu =\frac{K\overline{b}}{S} \). The general solutions for hydraulic head between two parallel boundaries are presented below; b and c are coefficients, b or = 1 for a no-flow boundary, and b or = –1 for is a constant-head boundary (Dirichlet’s condition).

Term for the pumping well:

$$ {Z}_{2\mathrm{Limit}\_\mathrm{Pump}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\frac{Q}{2\uppi K}\left\{\mathrm{W}\left[\frac{{\left({x}_{\mathrm{o}\mathrm{bs}}-{x}_{\mathrm{w}}\right)}^2+{\left({y}_{\mathrm{o}\mathrm{bs}}-{y}_{\mathrm{w}}\right)}^2}{4\nu t}\right]+\sum \limits_{n=0,2,4..}^{\infty }{b}^{n/2+1}{c}^{n/2}\ \mathrm{W}\left[\frac{{\left(2 nL+2d-{x}_{\mathrm{o}\mathrm{bs}}+{x}_{\mathrm{w}}\right)}^2+{\left({y}_{\mathrm{o}\mathrm{bs}}-{y}_{\mathrm{w}}\right)}^2}{4\nu t}\right]+\sum \limits_{n=2,4..}^{\infty }{(bc)}^{n/2}\ \mathrm{W}\left[\frac{{\left(-2 nL-{x}_{\mathrm{o}\mathrm{bs}}+{x}_{\mathrm{w}}\right)}^2+{\left({y}_{\mathrm{o}\mathrm{bs}}-{y}_{\mathrm{w}}\right)}^2}{4\nu t}\right]+\sum \limits_{n=2,4..}^{\infty }{(bc)}^{n/2}\ \mathrm{W}\left[\frac{{\left(2 nL-{x}_{\mathrm{o}\mathrm{bs}}+{x}_{\mathrm{w}}\right)}^2+{\left({y}_{\mathrm{o}\mathrm{bs}}-{y}_{\mathrm{w}}\right)}^2}{4\nu t}\right]+\sum \limits_{n=2,4..}^{\infty }{b}^{n/2-1}{c}^{n/2}\ \mathrm{W}\left[\frac{{\left(-2 nL+2d-{x}_{\mathrm{o}\mathrm{bs}}+{x}_{\mathrm{w}}\right)}^2+{\left({y}_{\mathrm{o}\mathrm{bs}}-{y}_{\mathrm{w}}\right)}^2}{4\nu t}\right]\right\} $$
(31)

Term for the rectangular recharging area:

$$ {Z}_{2\mathrm{Limi}{\mathrm{t}}_{\mathrm{Rech}}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\frac{R\overline{b}}{2S}\left\{\underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau +\sum \limits_{n=0,2,4..}^{\infty }{b}^{n/2+1}{c}^{n/2}\ \underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+2 nL+2d-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-2 nL-2d+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau +\sum \limits_{n=2,4..}^{\infty }{(bc)}^{n/2}\ \underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-2 nL-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+2 nL+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau +\sum \limits_{n=2,4..}^{\infty }{(bc)}^{n/2}\ \underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+2 nL-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-2 nL+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau +\sum \limits_{n=2,4..}^{\infty }{b}^{n/2-1}{c}^{n/2}\underset{0}{\overset{t}{\int }}\left[\mathrm{Erf}\left(\frac{x_{\mathrm{L}}-2 nL+2d-{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{x_{\mathrm{L}}+2 nL-2d+{x}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right]\times \left[\mathrm{Erf}\left(\frac{y_{\mathrm{L}}+{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)+\mathrm{Erf}\left(\frac{y_{\mathrm{L}}-{y}_{\mathrm{o}\mathrm{bs}}}{2\sqrt{\nu \tau}}\right)\right] d\tau \right\} $$
(32)

Figure 8 compares the solution of Eq. (32), with b = −1, c = 1, 2xL = 2 L, d = L, yL→∞, t→∞, with Bruggeman’s (1999; sol. 21.11, p. 24) steady-state solution.

Fig. 8
figure 8

Hydraulic-head profile in steady-state condition caused by recharge from precipitation (R) through an infinite strip of width 2 L bounded on one side by a stream and on the other by a no-flow boundary. Aquifer parameters are: K = 10−4 m/s, S = 0.05, 2 L = 800 m, R = 1.27 × 10−8 m/s (or 400 mm/year), with h0 varying from 1.5 to 12 m. The inserted table shows standardized root mean square error values (RMSE-D) for the five cases

Appendix 4

The hydraulic-head solution for a pumping well near a stream with a partially clogged streambed that partially penetrates the aquifer (Hunt 1999), modified for an unconfined aquifer condition (linearized Boussinesq solution as in Hantush 1967), is:

$$ {Z}_{\mathrm{HuntPump}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\frac{Q_{\mathrm{Pump}}}{2\uppi K}\left\{\mathrm{W}\left(\frac{{x_{\mathrm{o}\mathrm{bs}}}^2+{y_{\mathrm{o}\mathrm{bs}}}^2}{4\nu t}\right)-\underset{0}{\overset{\infty }{\int }}{\mathrm{e}}^{-\theta}\mathrm{W}\left[\frac{{\left(d+\left|d-{x}_{\mathrm{o}\mathrm{bs}}\right|+2K\overline{b}\theta /\lambda \right)}^2+{y_{\mathrm{o}\mathrm{bs}}}^2}{4\nu t}\right] d\theta \right\} $$
(33)

with \( \lambda =\frac{b}{b^{{\prime\prime} }}k^{{\prime\prime} } \); b = stream width, b″ = streambed thickness and k″ = streambed hydraulic conductivity.

The right part of Eq. (33) can be rearranged with the following change of variable

θ =  –Ln(u) then \( =-\frac{1}{\mathrm{u}} du \); Ln = natural logarithm.

Then Eq. (33) becomes:

$$ {Z}_{\mathrm{HuntPump}}\left({x}_{\mathrm{o}\mathrm{bs}},{y}_{\mathrm{o}\mathrm{bs}},t\right)={h}^2-{h_{\mathrm{o}}}^2=\frac{Q}{2\uppi K}\left\{\mathrm{W}\left(\frac{{x_{\mathrm{o}\mathrm{bs}}}^2+{y_{\mathrm{o}\mathrm{bs}}}^2}{4\nu t}\right)-\underset{0}{\overset{1}{\int }}\mathrm{W}\left[\frac{{\left(d+\left|d-{x}_{\mathrm{o}\mathrm{bs}}\right|-2K\overline{b}\mathrm{Ln}(u)/\lambda \right)}^2+{y_{\mathrm{o}\mathrm{bs}}}^2}{4\nu t}\right] du\right\} $$
(34)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewandel, B., Lanini, S., Hakoun, V. et al. Artificial aquifer recharge and pumping: transient analytical solutions for hydraulic head and impact on streamflow rate based on the spatial superposition method. Hydrogeol J 29, 1009–1026 (2021). https://doi.org/10.1007/s10040-020-02294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02294-9

Keywords

Navigation