Skip to main content
Log in

Anisotropic Teleparallel Cosmology via Thermodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the most of existing cosmological investigations, the isotropic space–time models have been considered. In the present work, we focus on beyond this limitation and discuss the influence of anisotropy from thermodynamical perspective. The main goal of this study is to discuss the first and the generalized second laws of thermodynamics in an expanding anisotropic inhomogeneous model of the cosmos from the teleparallel gravity perspective, which is filled with the baryonic matter (BM) interacting with the dark energy (DE) and the cold dark matter (CDM) by assuming the cosmos as a thermodynamical system, which is bounded by a dynamical horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Perlmutter, S., Aldering, G., Della Valle, M., et al.: Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51 (1998)

    ADS  Google Scholar 

  2. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of \(\Omega\) and \(\Lambda\) from 42 High-Redshift Supernovae. Astrophys. J. 517, 565 (1999)

    ADS  MATH  Google Scholar 

  3. Knop, R.A., Aldering, G., Amanullah, R., et al.: New constraints on \(\Omega _M\), \(\Omega _{\Lambda }\), and \(\omega\) from an independent set of 11 high-redshift supernovae observed with the hubble space telescope. Astrophys. J. 598, 102 (2003)

    ADS  Google Scholar 

  4. de Bernardis, P., Ade, P.A.R., Bock, J.J., et al.: A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)

    ADS  Google Scholar 

  5. Miller, A.D., Caldwell, R., Devlin, M.J., et al.: A measurement of the angular power spectrum of the cosmic microwave background from \(l=\)100 to 400. Astrophys. J. Lett. 524, L1 (1999)

    ADS  Google Scholar 

  6. Bahcall, N.A., Ostriker, J.P., Perlmutter, S., Steinhardt, P.J.: The cosmic triangle–revealing the state of the Universe. Science 284, 1481 (1999)

    ADS  Google Scholar 

  7. Bennett, C.L., Halpern, M., Hinshaw, G., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations–preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  8. Bridle, S.L., Lahav, O., Ostriker, J.P., Steinhardt, P.J.: Precision cosmology? Not just yet. Science 299, 1532 (2003)

    Google Scholar 

  9. Spergel, D.N., Verde, L., Peiris, H.V., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations–determination of cosmological parameters. ApJS 148, 175 (2003)

    ADS  Google Scholar 

  10. Tegmark, M., Strauss, M.A., Blanton, M.R., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  MATH  Google Scholar 

  11. Allen, S.W., Schmidt, R.W., Ebeling, H., et al.: Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457 (2004)

    ADS  Google Scholar 

  12. Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., et al.: Planck 2013 results - XVI. Cosmological parameters. A&A 571, A16 (2014)

    Google Scholar 

  13. Ade, P.A.R., Aghanim, N., Arnaud, M., et al.: Planck 2015 results–XIII. Cosmological parameters. A&A 594, A13 (2016)

    Google Scholar 

  14. Aghanim, N., Akrami, Y., Ashdown, M., et al.: Planck 2018 results–VI. Cosmological parameters. A&A 641, A6 (2020)

    Google Scholar 

  15. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar-tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000)

    ADS  Google Scholar 

  17. Capozziello, S.: Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  19. Sahni, V.: Dark Matter and Dark Energy. Lect. Notes Phys. 653, 141 (2004)

    ADS  MATH  Google Scholar 

  20. Feng, B., Wang, X.L., Zhang, X.M.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    ADS  Google Scholar 

  21. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    ADS  Google Scholar 

  22. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zhu, Z.H., Alcaniz, J.S.: Accelerating Universe from gravitational leakage into extra dimensions–testing with Type Ia Supernovae. Astrophys. J. 620, 7 (2005)

    ADS  Google Scholar 

  25. Urban, F.R., Zhitnitsky, A.R.: Cosmological constant, violation of cosmological isotropy and CMB. JCAP 0909, 018 (2009)

    ADS  Google Scholar 

  26. Ohta, N.: Dark energy and QCD ghost. Phys. Lett. B 695, 41 (2011)

    ADS  Google Scholar 

  27. Feng, C.-J., Li, X.-Z., Xi, P.: Global behavior of cosmological dynamics with interacting Veneziano ghost. JHEP 1205, 046 (2012)

    ADS  Google Scholar 

  28. Veneziano, G.: U(1) without instantons. Nucl. Phys. B 159, 213 (1979)

    ADS  MathSciNet  Google Scholar 

  29. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  30. Li, M., Li, X.-D., Wang, S., Wang, Y.: Dark energy. Commun. Theor. Phys. 56, 525 (2011)

    ADS  MATH  Google Scholar 

  31. Wei, H., Cai, R.-G.: A new model of agegraphic dark energy. Phys. Lett. B 660, 113 (2008)

    ADS  Google Scholar 

  32. Cardone, V.F., Troisi, A., Capozziello, S.: Unified dark energy models: a phenomenological approach. Phys. Rev. D 69, 083517 (2004)

    ADS  Google Scholar 

  33. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    ADS  MATH  Google Scholar 

  34. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    ADS  Google Scholar 

  35. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover Books on Astronomy, Dover, New York (2010)

    MATH  Google Scholar 

  36. Christensen-Dalsgard, J.: Lecture Notes on Stellar Structure and Evolution. Aarhus University Press, Aarhus (2004)

    Google Scholar 

  37. Kaluza, T.: On the unification problem in physics. Sits. Press. Akad. Wiss. Math. Phys. K1, 895 (1921)

    Google Scholar 

  38. Klein, O.: Quantentheorie und fünfdimensionale Relativitätstheorie. Zeits. Phys. 37, 895 (1926)

    Google Scholar 

  39. Calcagni, G.: Fractal Universe and quantum gravity. Phys. Rev. Lett. 104, 251301 (2010)

    ADS  Google Scholar 

  40. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  41. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Jacobson, T., Parentani, R.: Horizon entropy. Found. Phys. 33, 323 (2003)

    MathSciNet  Google Scholar 

  44. Bekenstein, J.D.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292 (1974)

    ADS  Google Scholar 

  45. Cai, R.G., Kim, S.P.: First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. JHEP 02, 050 (2005)

    ADS  MathSciNet  Google Scholar 

  46. Akbar, M., Cai, R.G.: Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe. Phys. Rev. D 75, 084003 (2007)

    ADS  Google Scholar 

  47. Wang, B., Gong, Y., Abdalla, E.: Thermodynamics of an accelerated expanding universe. Phys. Rev. D 74, 083520 (2006)

    ADS  Google Scholar 

  48. Davies, P.C.W.: Cosmological horizons and the generalised second law of thermodynamics. Class. Quantum Gravity 4, L225 (1987)

    ADS  MathSciNet  Google Scholar 

  49. Izquierdo, G., Pavon, D.: Dark energy and the generalized second law. Phys. Lett. B 633, 420 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Sadjadi, H.M.: Schwarzschild black hole and generalized second law in phantom-dominated universe. Phys. Lett. B 645, 108 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Zhou, J., Wang, B., Gong, Y., Abdalla, E.: The generalized second law of thermodynamics in the accelerating universe. Phys. Lett. B 652, 86 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Karami, K., Ghaffari, S.: The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon. Phys. Lett. B 68, 125 (2010)

    ADS  Google Scholar 

  53. Karami, K., Ghaffari, S., Soltanzadeh, M.M.: The generalized second law of gravitational thermodynamics on the apparent and event horizons in FRW cosmology. Class. Quantum Gravity 2, 205021 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Salti, M., Aydogdu, O., Yanar, H.: Kaluza-Klein nature of entropy function. Mod. Phys. Lett. A 30, 1550209 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Salti, M., Aydogdu, O.: Entropy function for the teleparallel Kaluza-Klein reduction. Int. J. Thermodyn. 19, 102 (2016)

    Google Scholar 

  56. Askin, M., Salti, M., Aydogdu, O.: Cosmology via thermodynamics of polytropic gas. Mod. Phys. Lett. A 32, 1750177 (2017)

    ADS  Google Scholar 

  57. Keskin, A.I., Acikgoz, I.: A unified picture of cosmological entropy on apparent horizon in \(F(R, G)\) gravity. Mod. Phys. Lett. A 32, 1750182 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Pourhassan, B., Faizal, M.: Thermodynamics of a sufficient small singly spinning Kerr-AdS black hole. Nucl. Phys. B 913, 834 (2016)

    ADS  MATH  Google Scholar 

  59. Pourhassan, B., Kokabi, K., Rangyan, S.: Thermodynamics of higher dimensional black holes with higher order thermal fluctuations. Gen. Rel. Gravity 49, 144 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Wolfram Research Inc.: Mathematica 9.0. Wolfram Research, Inc., Champaign (2012)

  61. Aldrovandi, R., Pereira, J.G.: Teleparallel Gravity–An Introduction. Springer, Cham (2013)

    MATH  Google Scholar 

  62. Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Hayashi, K., Shirafuji, T.: New general relativity. Phys. Rev. D 19, 3524 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  64. Mikhail, F.I., Wanas, M.I.: A generalized field theory. 2. Linearized field equations. Proc. R. Soc. Lond. Ser. A 356, 471 (1977)

  65. Karami, K., Abdolmaleki, A.: Generalized second law of thermodynamics in f(T) gravity. JCAP 2012(04), 007 (2012)

    Google Scholar 

  66. Ulhoa, S.C., Santos, A.F., Khanna, F.C.: Scattering of fermions by gravitons. Gen. Rel. Gravit. 49, 54 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Combi, L., Romero, G.E.: Is Teleparallel Gravity Really Equivalent to General Relativity? Annalen Phys. 530, 1700175 (2018)

    ADS  MathSciNet  Google Scholar 

  68. Abedi, H., Salti, M.: Multiple field modified gravity and localized energy in teleparallel framework. Gen. Rel. Grav. 47, 93 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  69. Salti, M., Aydogdu, O., Yanar, H., Binbay, F.: Brans-Dicke type teleparallel scalar-tensor theory. Mod. Phys. Lett. A 32, 1750183 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Ulhoa, S.: On dark energy and accelerated reference frames. Annalen der Physik 524, 273278 (2012)

    MATH  Google Scholar 

  71. Vargas, T.: The Energy of the Universe in Teleparallel Gravity. Gen. Relativ. Gravit. 36, 1255 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Maluf, J.W.: The teleparallel equivalent of general relativity. Ann. Phys. 525, 339 (2013)

    MathSciNet  Google Scholar 

  73. Miao, R.X., Li, M., Miao, Y.G.: Violation of the first law of black hole thermodynamics in \(f(T)\) gravity. JCAP 11, 033 (2011)

    ADS  Google Scholar 

  74. Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D 48, 3427 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  75. Iyer, V., Wald, R.M.: Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 50, 846 (1994)

    ADS  MathSciNet  Google Scholar 

  76. Jacobson, T.: Thermodynamics of Spacetime–the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Brustein, R., Hadad, M.: Einstein equations for generalized theories of gravity and the thermodynamic relation \(\delta Q=T\delta S\) are equivalent. Phys. Rev. Lett. 103, 101301 (2009)

    ADS  MathSciNet  Google Scholar 

  78. Eling, C., Guedens, R., Jacobson, T.: Nonequilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96, 121301 (2006)

    ADS  MathSciNet  Google Scholar 

  79. Gu, W., Li, M., Miao, R.X.: A New Entropic Force Scenario and Holographic Thermodynamics. Report Number CAS-KITPC/ITP-210. e-Print: 1011.3419 (2010)

  80. Miao, R.X., Meng, J., Li, M.: \(f(R)\) Gravity and Maxwell Equations from the Holographic Principle. e-Print:1102.1166 (2011)

  81. Koivito, T., Mota, D.F.: Anisotropic dark energy–dynamics of the background and perturbations. JCAP 0806, 018 (2008)

    ADS  Google Scholar 

  82. Barrow, J.D.: Cosmological limits on slightly skew stresses. Phys. Rev. D 55, 7451 (1997)

    ADS  Google Scholar 

  83. Zimdahl, W., Pavon, D.: Scaling Cosmology. Gen. Relativ. Gravit. 35, 413 (2003)

    ADS  MATH  Google Scholar 

  84. Cypriano, E.S., et al.: Gemini and Chandra observations of Abell 586–a relaxed strong-lensing cluster. Astrophys. J. 630, 38 (2005)

    ADS  Google Scholar 

  85. Biswas, S.K., Chakraborty, S.: Interacting dark energy in \(f(T)\) cosmology–a dynamical system analysis. Int. J. Mod. Phys. D 24, 1550046 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  86. Setare, M.R.: Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe. JCAP 0701, 023 (2007)

    ADS  MathSciNet  Google Scholar 

  87. Smoot, G.F., Bennett, C.L., Kogut, A., et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1 (1992)

    ADS  Google Scholar 

  88. Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations–sky maps, systematic errors, and basic results. ApJS 192, 14 (2011)

    ADS  Google Scholar 

  89. Zhou, J., Wang, B., Pavon, D., Abdalla, E.: A preliminary analysis of the energy transfer between the dark sectors of the Universe. Mod. Phys. Lett. A 24, 1689 (2009)

    ADS  MATH  Google Scholar 

  90. Das, S., Majumdar, P., Bhaduri, R.K.: General logarithmic corrections to black-hole entropy. Class. Quantum Gravit. 19, 2355 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  91. Wang, B., Lin, C.Y., Pavon, D., Abdalla, E.: Thermodynamical description of the interaction between holographic dark energy and dark matter. Phys. Lett. B 662, 1 (2008)

    ADS  MATH  Google Scholar 

  92. Pavon, D., Wang, B.: Le Châtelier-Braun principle in cosmological physics. Gen. Relativ. Gravit. 41, 1 (2009)

    ADS  MATH  Google Scholar 

  93. Karami, K., Ghaffari, S.: The generalized second law in irreversible thermodynamics for the interacting dark energy in a non-flat FRW universe enclosed by the apparent horizon. Phys. Lett. B 685, 115 (2010)

    ADS  Google Scholar 

  94. Jamil, M., Saridakis, E.N., Setare, M.R.: Thermodynamics of dark energy interacting with dark matter and radiation. Phys. Rev. D 81, 023007 (2010)

    ADS  Google Scholar 

  95. Tipler, F.J., Graber, J., McGinley, M., et al.: Closed universes with black holes but no event horizons as a solution to the black hole information problem. MNRAS 379, 629 (2007)

    ADS  Google Scholar 

  96. Booth, I.: Black-hole boundaries. Can. J. Phys. 83, 1073 (2005)

    ADS  Google Scholar 

  97. Cai, R.G., Cao, L.M., Hu, Y.P.: Hawking radiation of an apparent horizon in a FRW universe. Class. Quant. Gravit. 26, 155018 (2009)

    ADS  MATH  Google Scholar 

  98. Bousso, R.: Cosmology and the \(S\) matrix. Phys. Rev. D 71, 064024 (2005)

    ADS  MathSciNet  Google Scholar 

  99. Dubovsky, S., Sibiryakov, S.: Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind. Phys. Lett. B 638, 509 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  100. Lotze, K.H.: Production of photons in anisotropic spacetimes. Class. Quant. Gravit. 7, 2145 (1990)

    ADS  MathSciNet  Google Scholar 

  101. Wang, G.M., Sevick, E.M., Mittag, E., et al.: Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002)

    ADS  Google Scholar 

  102. Gerstner, E.: Second law broken. Nature (2002). https://doi.org/10.1038/news020722-2

    Article  Google Scholar 

  103. Villalba, V.M.: Particle creation in a cosmological anisotropic universe. Int. J. Theor. Phys. 36, 1331 (1997)

    MATH  Google Scholar 

  104. Collins, C.B.: Special exact solutions of Einstein’s equations–a theorem and some observations. Phys. Lett. A 60, 397 (1977)

    ADS  MathSciNet  Google Scholar 

  105. Sanyal, A.K.: If Gauss-Bonnet interaction plays the role of dark energy. Phys. Lett. B 645, 1 (2007)

    ADS  Google Scholar 

  106. Barrow, J.D.: Varieties of expanding universe. Class. Quantum Gravit. 13, 2965 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  107. Sharif, M., Saleem, R.: Inflationary weak anisotropic model with general dissipation coefficient. Astrophys. Space Sci. 361, 107 (2016)

    ADS  Google Scholar 

  108. Aluri, P.K., Panda, S., Sharma, M., Thakur, S.: Anisotropic universe with anisotropic sources. JCAP 12, 003 (2013)

    Google Scholar 

  109. Rodrigues, M.E., Houndjo, M.J.S., Saez-Gomez, D., Rahaman, F.: Anisotropic universe models in \(f(T)\) gravity. Phys. Rev. D 86, 104059 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewers for giving such constructive comments which substantially helped improving the quality of the paper. This study was supported by the Research Fund of Mersin University in Turkey with the project number: 2019-1-TP2-3469.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeter, U., Sogut, K. & Salti, M. Anisotropic Teleparallel Cosmology via Thermodynamics. Found Phys 51, 19 (2021). https://doi.org/10.1007/s10701-021-00435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-021-00435-y

Keywords

Navigation