Skip to main content
Log in

Effect of Climatic Fluctuations on the Structure and Functioning of Ecosystems of Continental Water Bodies

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Climatic fluctuations are among the most important factors that cause changes in terrestrial and aquatic ecosystems. This review considers the principal mechanisms of the influence of climate changes on the structure and functioning of ecosystems of water bodies and shows the need to take these mechanisms into account when developing strategies for conserving the biological resources of aquatic ecosystems. Climatic fluctuations affect aquatic ecosystems through changes in temperature, surface runoff of nutrients and other substances and their ratios, the intensity of water mixing during the circulation period, and other mechanisms. Additional nutrients received in rainy periods from the catchment area and directly with precipitation stimulate the growth of primary producers and cause the risk of the further eutrophication of water bodies. An increase in temperature promotes the growth of potentially toxic phytoplankton species and exacerbates the problem of green tides, the massive development of multicellular algae in the coastal zone. Organic substances coming from the catchment area during wet periods stimulate a microbial loop in aquatic ecosystems. In shallow lakes, climate fluctuations can cause changes in food webs and the ecological regime. Climate-induced changes in the composition of producer communities often weaken pelagic–benthic relationships in aquatic ecosystems. In some cases, climate changes have contributed to the invasions of alien species. The natural dynamics of ecosystems affected by climate fluctuations deserves close attention and requires the development of special adaptive management of aquatic biological resources. In some cases, it is necessary to take more severe measures for the protection and restoration of water bodies, which would take into account adverse changes in natural factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.

Similar content being viewed by others

REFERENCES

  1. Abell, J.M., Özkundakci, D., Hamilton, D.P., and Jones, J.R., Latitudinal variation in nutrient stoichiometry and chlorophyll-nutrient relationships in lakes: a global study, Fundam. Appl. Limnol., 2012, vol. 181, pp. 1‒14.

    Article  CAS  Google Scholar 

  2. Alimov, A.F., Bogatov, V.V., and Golubkov, S.M., Produktsionnaya gidrobiologiya (Production Hydrobiology), St. Petersburg: Nauka, 2013.

  3. Bariĉa, J., Kling, H., and Gibson, J., Experimental manipulation of algal bloom composition by nitrogen addition, Can. J. Fish. Aquat. Sci., 1980, vol. 37, pp. 1175‒1183.

    Article  Google Scholar 

  4. Bogatov, V.V. and Fedorovskiy, A.S., Freshwater ecosystems of the southern region of the Russian Far East are undergoing extreme environmental change, Knowl. Manage. Aquat. Ecosyst., 2016, vol. 417. https://doi.org/10.1051/kmae/2016021

  5. Bogatov, V.V. and Fedorovskiy, A.S., Osnovy rechnoi gidrologii i gidrobiologii (Principles of River Hydrology and Hydrobiology), Vladivostok: Dal’nauka, 2017.

  6. Boulion, V.V., Effect of geographical factors on the biological productivity of lake ecosystems: modeling and forecast, Contemp. Probl. Ecol., 2017, vol. 10, no. 2, pp. 111–118. https://doi.org/10.1134/S1995425517020020

    Article  Google Scholar 

  7. Boulion, V.V., Modeling the biotic energy flow in the plankton community of the lake type ecosystem with the involvement of microorganisms, Inland Water Biol., 2019, vol. 12, no. 3, pp. 259–266.

    Article  Google Scholar 

  8. Chukov, S.N., Golubkov, M.S., and Ryumin, A.G., Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem, Eurasian Soil Sci., 2010, vol. 43, pp. 1255–1262. https://doi.org/10.1134/S1064229310110086

    Article  Google Scholar 

  9. Eggleton, T., Future physical changes, in Climate Change Impacts on Fisheries and Aquaculture. A Global Analysis, Chichester: Wiley, 2018, vol. 1, pp. 23–44.

    Google Scholar 

  10. Elliott, J.A., Jones, I.D., and Thackeray, S.J., Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake, Hydrobiologia, 2006, vol. 559, pp. 401‒411.

    Article  CAS  Google Scholar 

  11. Eriksson Wiklund, A.-K., Dahlgren, K., Sunderlin, B., and Andersson, A., Effects of warming and shifts of pelagic food web structure on benthic productivity in a coastal marine system, Mar. Ecol.: Prog. Ser., 2009, vol. 396, pp. 13‒25.

    Article  CAS  Google Scholar 

  12. Gentry, L.E., David, M.B., Royer, T.V., Mitchell, C.A., and Starks, K.M., Phosphorus transport pathways to streams in tile-drained agricultural watersheds, J. Environ. Qual., 2007, vol. 36, pp. 408–415.

    Article  CAS  PubMed  Google Scholar 

  13. Gladyshev, M.I. and Gubelit, Yu.I., Green tides: new consequences of the eutrophication of natural waters (invited review), Contemp. Probl. Ecol., 2019, vol. 12, no. 2, pp. 109–125. https://doi.org/10.1134/S1995425519020057

    Article  Google Scholar 

  14. Golubkov, M.S., Primary production of plankton and decomposition of organic matter in saline lakes of the Crimea Peninsula, Inland Water Biol., 2012, vol. 5, no. 4, pp. 322–327.

    Article  Google Scholar 

  15. Golubkov, M.S. and Golubkov, S.M., Climatic factors and hydrobiological regimes of shallow salt lakes, in Dinamika biologicheskogo raznoobraziya i bioresursov kontinental’nykh vodoemov (Dynamics of Biological Diversity and Biological Resources of Continental Reservoirs), St. Petersburg: Nauka, 2012, pp. 113‒126.

  16. Golubkov, M.S. and Golubkov, S.M., The effect of weather conditions on eutrophication in the Neva River Estuary, Dokl. Biol. Sci., 2018, vol. 480, pp. 110–113. https://doi.org/10.1134/S0012496618030122

    Article  CAS  PubMed  Google Scholar 

  17. Golubkov, M. and Golubkov, S., Eutrophication in the Neva Estuary (Baltic Sea): response to temperature and precipitation patterns, Mar. Freshwater Res., 2020, vol. 71, no. 6, pp. 583–595.

    Article  Google Scholar 

  18. Golubkov, M., Nikulina, V., and Golubkov, S., Effects of environmental variables on midsummer dinoflagellate community in the Neva estuary (Baltic Sea), Oceanologia, 2019, vol. 61, pp. 197–207. https://doi.org/10.1016/j.oceano.2018.09.001

    Article  Google Scholar 

  19. Golubkov, S.M., Trophodynamics of continental water reservoirs: from a balance approach to the dynamic variability of ecosystems, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2006, no. 5, pp. 18‒25.

  20. Golubkov, S. and Alimov, A., Ecosystem of the Neva estuary (Baltic Sea): natural dynamics or response to anthropogenic impacts? Mar. Pollut. Bull., 2010, vol. 61, pp. 198–204.

    Article  CAS  PubMed  Google Scholar 

  21. Golubkov, S., Kemp, R., Golubkov, M., Balushkina, E., Litvinchuk, L., and Gubelit, Y., Biodiversity and the functioning of hypersaline lake ecosystems from Crimea Peninsula (Black Sea), Fundam. Appl. Limnol., 2007, vol. 169, no. 1, pp. 79–87. https://doi.org/10.1127/1863-9135/2007/0169-0079

    Article  Google Scholar 

  22. Golubkov, S.M., Maksimov, A.A., Golubkov, M.S., and Litvinchuk, L.F., Dynamics of biological diversity and biological resources of the ecosystem of the eastern part of the Gulf of Finland affected by regional climate changes and invasive species, in Dinamika biologicheskogo raznoobraziya i bioresursov kontinental’nykh vodoemov (Dynamics of Biological Diversity and Biological Resources of Continental Reservoirs), St. Petersburg: Nauka, 2012, pp. 278‒293.

  23. Golubkov, S., Golubkov, M., Tiunov, A., and Nikulina, V. Long-term changes in primary production and mineralization of organic matter in the Neva estuary (Baltic Sea), J. Mar. Syst., 2017, vol. 171, pp. 73–80. https://doi.org/10.1016/j.jmarsys.2016.12.009

    Article  Google Scholar 

  24. Golubkov, S.M., Shadrin, N.V., Golubkov, M.S., Balushkina, E.V., and Litvinchuk, L.F., Food chains and their dynamics in ecosystems of shallow lakes with different water salinities, Russ. J. Ecol., 2018a, vol. 49, no. 5, pp. 442–448. https://doi.org/10.1134/S1995425519020057

    Article  CAS  Google Scholar 

  25. Golubkov, S.M., Berezina, N.A., Gubelit, Y.I., Demchuk, A.S., Golubkov, M.S., and Tiunov, A.V., A relative contribution of carbon from green tide algae Cladophora glomerata and Ulva intestinalis in the coastal food webs in the Neva estuary (Baltic Sea), Mar. Pollut. Bull., 2018b, vol. 126, pp. 43–50. https://doi.org/10.1016/j.marpolbul.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  26. Golubkov, S.M., Belyakov, V.P., Golubkov, M.S., Litvinchuk, L.F., Petukhov, V.A., and Gubelit, Yu.I., Energy flows and phosphorus turnover in the system of shallow reservoir under anthropogenic stress, Russ. J. Ecol., 2019a, vol. 50, no. 6, pp. 560–566. https://doi.org/10.1134/S1067413619060055

    Article  CAS  Google Scholar 

  27. Golubkov, S.M., Golubkov, M., and Tiunov, A.V., Anthropogenic carbon as a basal resource in the benthic food webs in the Neva Estuary (Baltic Sea), Mar. Pollut. Bull., 2019b, vol. 146, pp. 190–200. https://doi.org/10.1016/j.marpolbul.2019.06.037

    Article  CAS  PubMed  Google Scholar 

  28. Golubkov, S.M., Balushkina, E.V., and Golubkov, M.S., Restoration of zoobenthic communities and water quality in the river ecosystem after a decrease in the level of organic pollution, Contemp. Probl. Ecol., 2020, vol. 13, no. 2, pp. 146–155. https://doi.org/10.1134/S1995425520020031

    Article  Google Scholar 

  29. Gubelit, Yu.I., Climatic impact on community of filamentous macroalgae in the Neva estuary (eastern Baltic Sea), Mar. Pollut. Bull., 2015, vol. 91, pp. 166–172.

    Article  CAS  PubMed  Google Scholar 

  30. Holopainen, R., Lehtiniemi, M., Meier, H.E.M., Albertsson, J., Gorokhova, E., Kotta, J., and Viitasalo, M., Impacts of changing climate on the non-indigenous invertebrates in the northern Baltic Sea by end of the twenty-first century, Biol. Invasions, 2016, vol. 18, pp. 3015–3032.

    Article  Google Scholar 

  31. Hurrell, J.W., Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation, Science, 1995, vol. 269, pp. 676‒679.

    Article  CAS  PubMed  Google Scholar 

  32. Huttunen, I., Lehtonen, H., Huttunen, M., Piirainen, V., Korppoo, M., Veijalainen, N., Viitasalo, M., and Vehviläinen, B., Effects of climate change and agricultural adaptation on nutrient loading from Finnish catchments to the Baltic Sea, Sci. Total Environ., 2015, vol. 529, pp. 168–181.

    Article  CAS  PubMed  Google Scholar 

  33. Jansson, M., Hickler, T., Jonsson, A., and Karlsson, J., Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden, Ecosystems, 2008, vol. 11, pp. 367–376.

    Article  CAS  Google Scholar 

  34. Järvinen, M., Lehtinen, S., and Arvola, L., Variations in phytoplankton assemblage in relation to environmental and climatic variation in a boreal lake, Verh. Int. Verein. Limnol., 2006, vol. 29, pp. 1841–1844.

    Google Scholar 

  35. Jeppesen, E., Kronvang, B., Meerhoff, M., Sondergaard, M., Hansen, K.M., Andersen, H.E., Lauridsen, T.L., Beklioglu, M., Ozen, A.O., and Olesen, J.E., Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations, J. Environ. Qual., 2009, vol. 38, no. 5, pp. 1030–1041.

    Article  CAS  Google Scholar 

  36. Karlsson, J., Berggren, M., Ask, J., Bystrom, P., Jonsson, A., Laudon, H., and Jansson, M., Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers, Limnol. Oceanogr., 2012, vol. 57, pp. 1042–1048.

    Article  CAS  Google Scholar 

  37. Klais, R., Tamminen, T., Kremp, A., Spilling, K., An, B.W., Hajdu, S., and Olli, K., Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers, Limnol. Oceanogr., 2013, vol. 58, pp. 753–762.

    Article  Google Scholar 

  38. Kopylov, A.I., Lazareva, V.I., Mineeva, N.M., Maslennikova, T.S., and Stroinov, Ya.V., influence of anomalous high water temperatures on the development of the plankton community in the Middle Volga reservoirs in summer 2010, Dokl. Biol. Sci., 2012, vol. 442, pp. 11–13. https://doi.org/10.1134/S0012496612010012

    Article  CAS  PubMed  Google Scholar 

  39. Lin, Q., Xu, L., Hou, J., Liu, Z., Jeppesen, E., and Hanet, B.-P., Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming, Water Res., 2017, vol. 124, pp. 618–629.

    Article  CAS  PubMed  Google Scholar 

  40. Maximov, A.A., Long-term variability of climatic factors and dynamics of benthic animal communities, in Dinamika biologicheskogo raznoobraziya i bioresursov kontinental’nykh vodoemov (Dynamics of Biological Diversity and Biological Resources of Continental Reservoirs), St. Petersburg: Nauka, 2012, pp. 126‒138.

  41. Maximov, A.A., Mezhgodovaya i mnogoletnyaya dinamika makrobentosa na primere verhsiny Finskogo zaliva (Interannual and Long-Term Dynamics of Macrozoobenthos by Example of the Top of Gulf of Finland), St. Petersburg: Nestor-Istoriya, 2018.

  42. Maximov, A.A., Berezina, N.A., Golubkov, S.M., and Nikulina, V.N., Long-term climatic changes of the productivity of the northern lake ecosystem, in Dinamika biologicheskogo raznoobraziya i bioresursov kontinental’nykh vodoemov (Dynamics of Biological Diversity and Biological Resources of Continental Reservoirs), St. Petersburg: Nauka, 2012, pp. 138‒144.

  43. Markensten, H., Climate effects on early phytoplankton biomass over three decades modified by the morphometry in connected lake basins, Hydrobiologia, 2006, vol. 559, pp. 319‒329.

    Article  Google Scholar 

  44. Melack, J.M. and Jellison, R., Limnological conditions in Mono Lake: contrasting monomixis and meromixis in the 1990s, Hydrobiologia, 1998, vol. 384, pp. 21‒29.

    Article  Google Scholar 

  45. Mittelbach, G.G., Turner, A.M., Hall, D.J., Rettig, J.E., and Osenberg, C.W., Perturbation and resilience—a long-term, whole-lake study of predator extinction and reintroduction, Ecology, 1995, vol. 76, no. 8, pp. 2347‒2360.

    Article  Google Scholar 

  46. Naz, B.S., Kao, S.-C., Ashfaq, M., Gao, H., Rastogi, D., and Gangrade, S., Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States, J. Hydrol., 2018, vol. 556: P. 359–370.

    Article  Google Scholar 

  47. Nõges, P., van de Bund, W., Cardoso, A.C., and Heiskanen, A.-S. Impact of climate variability on parameters used in typology and ecological quality assessment of surface waters—implication on the Water Framework Directive, Hydrobiologia, 2007, vol. 584, pp. 373‒379.

    Article  CAS  Google Scholar 

  48. Padisák, J., Molnár, G., Soróczki-Pintér, É., Hajnal, É., and George, D.G., Four consecutive dry years in Lake Balaton (Hungary): consequences for phytoplankton biomass and composition, Verh. Int. Ver. Limnol., 2006, vol. 29, pp. 1153‒1159.

    Google Scholar 

  49. Rast, W. and Thornton, J.A., The phosphorus loading concept and OECD Eutrophication Program: origin, application and capabilities, in The Lake Handbook, Vol. 2: Lake Restoration and Rehabilitation, Oxford: Blackwell, 2005, pp. 354‒385.

  50. Rip, W.J., Ouboter, M.R.L., and Los, H.J., Impact of climatic fluctuations on Characeae biomass in a shallow, restored lake in the Netherlands, Hydrobiologia, 2007, vol. 584, pp. 415‒424.

    Article  CAS  Google Scholar 

  51. Roberts, W.M., Gonzalez-Jimenez, J.L., Doody, D.G., Jordan, P., and Daly, K., Assessing the risk of phosphorus transfer to high ecological status rivers: integration of nutrient management with soil geochemical and hydrological conditions, Sci. Total Environ., 2017, vol. 589, pp. 25–35.

    Article  CAS  PubMed  Google Scholar 

  52. Rogozin, D.Yu., Meromikticheskie ozera Severo-Minusinskoi kotloviny: zakonomernosti stratifikatsii i ekologiya fototrofnykh sernykh bakterii (Meromictic Lakes of the North Minusinsk Depression: Stratification Pattern and Ecology of Phototrophic Sulfur Bacteria), Krasnoyarsk: Inst. Fiz., Sib. Otd., Ross. Akad. Nauk, 2019.

  53. Rogozin, D.Y., Tarnovsky, M.O., Belolipetskii, V.M., Zykov, V.V., Zadereev, E.S., Tolomeev, A.P., Drobotov, A.V., Barkhatov, Y.V., Gaevsky, N.A., Gorbaneva, T.B., Kolmakova, A.A., and Degermendzhi, A.G., Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response, Limnologica, 2017, vol. 66, pp. 12–23.

    Article  CAS  Google Scholar 

  54. Ruosteenoja, K., Räisänen, J., and Pirinen, P., Projected changes in thermal seasons and the growing season in Finland, Int. J. Climatol., 2011, vol. 31, pp. 1473–1487.

    Article  Google Scholar 

  55. Salmaso, N., Decet, F., and Cordella, P., Spring mixing depth affects the interannual variations in phytoplankton abundance and composition in deep lakes. A case study from Lake Garda (Northern Italy), Verh. Int. Ver. Limnol., 2003, vol. 28, pp. 1486‒1489.

    Google Scholar 

  56. Schoumans, O.F., Bouraoui, F., Kabbe, C., Oenema, O., and van Dijk, K.C., Phosphorus management in Europe in a changing world, Ambio, 2015, vol. 44, pp. 180–192.

    Article  CAS  PubMed Central  Google Scholar 

  57. Simona, M., Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano, J. Limnol., 2003, vol. 62, no. 2, pp. 190–206.

    Article  Google Scholar 

  58. Shadrin, N.V. and Anufriieva, E.V., Climate change impact on the marine lakes and their Crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine), Turk. J. Fish. Aquat. Sci., 2013, vol. 13, pp. 603–611.

    Article  Google Scholar 

  59. Shadrin, N.V. and Anufriieva, E.V., Structure and trophic relations in hypersaline environments, Biol. Bull. Rev., 2020, vol. 10, no. 1, pp. 48–56.

    Article  Google Scholar 

  60. Sharov, A.N., Berezina, N.A., Nazarova, L.E., Poliakova, T.N., and Chekryzheva, T.A., Links between biota and climate-related variables in the Baltic region using Lake Onega as an example, Oceanologia, 2014, vol. 56, no. 2, pp. 291‒306.

    Article  Google Scholar 

  61. Sharpley, A.N., Bergström, L., Aronsson, H., Bechmann, M., Bolster, C.H., Börling, K., Djodjic, F., Jarvie, H.P., Schoumans, O.F., Stamm, C., Tonderski, K.S., Ulén, B., Uusitalo, R., and Withers, P.J.A., Future agriculture with minimized phosphorus losses to waters: research needs and direction, Ambio, 2015, vol. 44, suppl. 2, pp. S163–S179.

    Article  PubMed  CAS  Google Scholar 

  62. Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H., and Tamminen, T., Shifting diatom—dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling, Front. Mar. Sci., 2018, vol. 5, art. ID 327. https://doi.org/10.3389/fmars.2018.00327

    Article  Google Scholar 

  63. Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.-S., and Lima, M., Ecological effects of climate fluctuations, Science, 2002, vol. 297, pp. 1292–1296.

    Article  CAS  PubMed  Google Scholar 

  64. Teutschbein, C., Sponseller, R.A., Grabs, T., Blackburn, M., Boyer, E.W., Hytteborn, J.K., and Bishop, K., Future riverine inorganic nitrogen load to the Baltic Sea from Sweden: an ensemble approach to assessing climate change effects, Global Biogeochem. Cycles, 2017, vol. 31, pp. 1674–1701.

    Article  CAS  Google Scholar 

  65. Thompson, R., Kamenik, C., and Schmid, R., Ultra-sensitive lakes and climate change, J. Limnol., 2005, vol. 64, no. 2, pp. 139–152.

    Article  Google Scholar 

  66. Uusitalo, R., Närvänen, A., Kaseva, A., Launto-Tiuttu, A., Heikkinen, J., Joki-Heiskala, P., Rasa, K., and Salo, T., Conversion of dissolved phosphorus in runoff by ferric sulfate to a form less available to algae: field performance and cost assessment, Ambio, 2015, vol. 44, pp. 286–296.

    Article  CAS  PubMed Central  Google Scholar 

  67. Vtoroi otsenochnyi doklad Rosgidrometa ob izmenenii klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume (The Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation: General Summary), Frolov, A.V., Moscow: Rosgidromet, 2014. http://voeikovmgo.ru/ download/2014/od/od2.pdf.

  68. Wen, Y., Schoups, G., and van de Giesen, N., Organic pollution of rivers: combined threats of urbanization, livestock farming and global climate change, Sci. Rep., 2017, vol. 7, no. 43289, pp. 1–9.

    CAS  Google Scholar 

  69. Weyhenmeyer, G., Blenckner, T., and Pettersson, K., Changes of the plankton spring outburst related to the North Atlantic Oscillation, Limnol. Oceanogr., 1999, vol. 44, no. 7, pp. 1788–1792.

    Article  Google Scholar 

  70. Wilk-Woźniak, E., Amirowicz, A., Pociecha, A., and Gąsiorowski, M., The effect of water balance of a man-made lacustrine ecosystem on the food web: does flushing affect the carbon signature of plankton and benthos? Ecohydrology, 2016, vol. 9, pp. 765–772.

    Article  Google Scholar 

  71. Williams, W.D., Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025, Environ. Conserv., 2002, vol. 29, pp. 154–167.

    Article  Google Scholar 

  72. Williamson, T.J., Vanni, M.J., and Renwick, W.H., Spatial and temporal variability of nutrient dynamics and ecosystem metabolism in a hyper-eutrophic reservoir differ between a wet and dry year, Ecosystems, 2020. https://doi.org/10.1007/s10021-020-00505-8

  73. Withers, P.J.A. and Jarvie, H.P., Delivery and cycling of phosphorus in rivers: a review, Sci. Total Environ., 2008, vol. 400, pp. 379–395.

    Article  CAS  PubMed  Google Scholar 

  74. Zadereev, E.S., Tolomeev, A.P., Drobotov, A.V., and Kolmakova, A.A., Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira, Contemp. Probl. Ecol., 2014, vol. 7, no. 4, pp. 384–396. https://doi.org/10.1134/S199542551404012X

    Article  Google Scholar 

  75. Zillén, L., Conley, D. J., Andrén, T., Andrén, E., and Björck, S., Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact, Earth-Sci. Rev., 2008, vol. 91, pp. 77–92.

    Article  Google Scholar 

Download references

Funding

This review was prepared within the framework of the state subject no. АААА-А19-119020690091-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Golubkov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubkov, S.M. Effect of Climatic Fluctuations on the Structure and Functioning of Ecosystems of Continental Water Bodies. Contemp. Probl. Ecol. 14, 1–10 (2021). https://doi.org/10.1134/S1995425521010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521010030

Keywords:

Navigation