Skip to main content
Log in

Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The impingement of a droplet on a rigid square obstacle in a microchannel is simulated numerically using a high-density-ratio pseudo-potential multi-relaxation time LBM. The effects of Reynolds (Re) number, Weber (We) number, contact angle, obstacle size and kinematic viscosity ratio on the droplet dynamics after impact are investigated. It was found that the formation of the liquid film around the obstacle, the expansion of the droplet and its rupture time are all affected by these factors. As the Re number increases, the process of droplet falling along the obstacle is faster and the droplet demonstrates a more intense dynamic behavior. Increasing the We number makes the liquid film around the obstacle thinner and more stretched. Hydrophilicity and hydrophobicity of the obstacle surface play a major role in its surface wetting. For the hydrophobic obstacle wall, the separated sub-droplets move more rapidly toward the channel walls. As the hydrophobicity increases, the small droplet left on the upper surface of the obstacle will bounce upward. The bouncing tendency increases as the kinematic viscosity ratio decreases. As the obstacle size increases, the droplet expands more around it and approaches the channel walls faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a, b :

Parameters of Carnahan–Starling equation of state

C :

Source term

c :

Lattice speed (lu ts−1)

c s :

Speed of sound (lu ts−1)

D :

Droplet diameter (lu)

e :

Discrete velocity vector (lu ts−1)

f :

Distribution function (mu lu−3)

F :

Total force on each particle (mu lu−2 ts−2)

F m :

Fluid–fluid interaction force (mu lu−2 ts−2)

F ads :

Fluid–solid interaction force (mu lu−2 ts−2)

H :

Maximum horizontal width of the droplet interface (lu)

L :

Maximum vertical width of the droplet interface (lu)

M :

Transformation matrix

n :

Mode of oscillation

P :

Pressure (mu lu−1 ts−2)

Q :

Related to the source term

R :

Gas constant in the EOS

S :

Force term

s 0: s 8 :

Components of relaxation matrix

t :

Time (ts)

T :

Temperature (tu) and Oscillation period (ts)

V :

Macroscopic velocity (lu ts−1)

U :

Velocity of droplet (lu ts−1)

\( {u_{x} ,u_{y} }\) :

Components of velocity field (lu ts−1)

\( w_{\alpha } \) :

Weighting factor in the \( \alpha \) direction

BGK:

Bhatnagar–Gross–Krook

EOS:

Equation of state

LBE:

Lattice Boltzmann equation

LBM:

Lattice Boltzmann method

MRT:

Multi-relaxation time

SRT:

Single relaxation time

Re:

Reynolds number (\( \frac{UD}{\nu_{l}} \))

We:

Weber number (\( \frac{{\rho_{l} U^{2} D}}{\sigma } \))

Ca:

Capillary number (\( \frac{\rho_{l} {\nu_{l}} U}{\sigma } \))

Oh:

Ohnesorge number (\( \frac{{{\text{We}}^{0.5} }}{\text{Re}} \))

\( \nu \) :

Kinematic viscosity (lu2 ts−1)

\( \lambda \) :

Bulk viscosity (lu2 ts−1)

\( \theta \) :

Contact angle (°)

\( \tau \) :

Relaxation time (–)

\( \rho \) :

Density (mu lu−3)

\(\mathbf\Lambda \) :

Relaxation time matrix (–)

\( \sigma \) :

Surface tension coefficient \(({\text{mu \, ts}}^{-2})\)

\( \psi \) :

Interaction potential function (-)

\( \alpha \) :

Lattice direction

Anal:

Analytical

g:

Gas

Num:

Numerical

l:

Liquid

w:

Wall

e:

Energy

\( \zeta \) :

Energy square

j:

Momentum

q:

Energy flux

r:

Ratio

c:

Critical

eq:

Equilibrium

\( \widehat{{}} \) :

Moment space

References

  1. Rahman MA, Balzan M, Heidrick T, Fleck BA (2012) Effects of the gas phase molecular weight and bubble size on effervescent atomization. Int J Multiph Flow 38(1):35–52

    Google Scholar 

  2. Chang HJ, Tsai MH, Hwang WS (2012) The simulation of micro droplet behavior of molten lead-free solder in inkjet printing process and its experimental validation. Appl Math Model 36(7):3067–3079

    Google Scholar 

  3. Eow JS, Ghadiri M (2002) Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem Eng J 85(2–3):357–368

    Google Scholar 

  4. Chen A, Lin TF, Ali HM, Yan WM (2020) Experimental study on bubble characteristics of time periodic subcooled flow boiling in annular ducts due to wall heat flux oscillation. Int J Heat Mass Transf 157:119974

    Google Scholar 

  5. Ma Y, Mohebbi R, Rashidi MM, Yang Z (2019) MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf 137:714–726

    Google Scholar 

  6. Ali HM (2020) Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—a comprehensive review. Sol Energy 197:163–198

    Google Scholar 

  7. Sriharan G, Harikrishnan S, Ali HM (2020) Experimental investigation on the effectiveness of MHTHS using different metal oxide-based nanofluids. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09779-5

    Article  Google Scholar 

  8. Ma Y, Mohebbi R, Rashidi MM, Manca O, Yang Z (2019) Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J Therm Anal Calorim 135(6):3197–3213

    Google Scholar 

  9. Khalid SU, Babar H, Ali HM, Janjua MM, Ali MA (2020) Heat pipes: progress in thermal performance enhancement for microelectronics. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09820-7

    Article  Google Scholar 

  10. Ali HM (ed) (2020) Hybrid nanofluids for convection heat transfer. Academic Press, Cambridge

    Google Scholar 

  11. Tariq HA, Anwar M, Malik A, Ali MA (2020) Hydro-thermal performance of normal-channel facile heat sink using TiO2–H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09838-x

    Article  Google Scholar 

  12. Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA (2019) Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf 130:123–134

    Google Scholar 

  13. Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors Actuators B Chem 114(1):350–356

    Google Scholar 

  14. Su G, Longest PW, Pidaparti RM (2010) A novel micro pump droplet generator for aerosol drug delivery: design simulations. Biomicrofluidics 4(4):044108

    Google Scholar 

  15. Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Google Scholar 

  16. Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10:1–28

    Google Scholar 

  17. Zhao Z, Poulikakos D, Fukai J (1996) Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate-I. Modeling. Int J Heat Mass Transf 39(13):2771–2789

    MATH  Google Scholar 

  18. Zhao Z, Poulikakos D, Fukai J (1996) Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate-II. Experiments. Int J Heat Mass Transf 39(13):2791–2802

    MATH  Google Scholar 

  19. Sikalo S, Marengo M, Tropea C, Ganic EN (2002) Analysis of impact of droplets on horizontal surfaces. Exp Thermal Fluid Sci 25(7):503–510

    Google Scholar 

  20. Sikalo S, Tropea C, Ganic EN (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286(2):661–669

    Google Scholar 

  21. Wu J, Huang JJ, Yan WW (2015) Lattice Boltzmann investigation of droplets impact behaviors onto a solid substrate. Colloids Surf A 484:318–328

    Google Scholar 

  22. Gunjal PR, Ranade VV, Chaudhari RV (2005) Dynamics of drop impact on solid surface: experiments and VOF simulations. AIChE J 51:59–78

    Google Scholar 

  23. Huh HK, Jung S, Seo KW, Sang JL (2015) Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid Nanofluid 18:1221–1232

    Google Scholar 

  24. Philippi J, Lagrée PY, Antkowiak A (2016) Drop impact on a solid surface: short-time self-similarity. J Fluid Mech 795:96–135

    MATH  Google Scholar 

  25. Mitra S, Sathe MJ, Doroodchi E, Utikar R, Shah MK, Pareek V, Joshi JB, Evans GM (2013) Droplet impact dynamics on a spherical particle. Chem Eng Sci 100:105–119

    Google Scholar 

  26. Zhu Y, Liu HR, Mu K, Gao P, Ding H, Lu XY (2017) Dynamics of drop impact onto a solid sphere: spreading and retraction. J Fluid Mech 824:R3

    MathSciNet  Google Scholar 

  27. Li Q, Yu Y, Luo KH (2019) Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Phys Rev E 100(5):053313

    Google Scholar 

  28. Liang G, Guo Y, Yang Y, Zhen N, Shen S (2013) Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mech 224:2993–3004

    Google Scholar 

  29. Leclear S, Leclear J, Abhijeet Park KC, Choi W (2016) Drop impact on inclined superhydrophobic surfaces. J Colloid Interface Sci 461(1):114–121

    Google Scholar 

  30. Bakshi S, Roisman IV, Tropea C (2007) Investigations on the impact of a drop onto a small spherical target. Phys Fluids 19:61–69

    MATH  Google Scholar 

  31. Pasandideh-Fard M, Bussmann M, Chandra S, Mostaghimi J (2001) Simulating droplet impact on a substrate of arbitrary shape. At Sprays 11:397–414

    Google Scholar 

  32. Liu X, Zhao Y, Chen S, Shen S, Zhao X (2017) Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube. Phys Fluids 29(6):062105

    Google Scholar 

  33. Liang G, Guo Y, Yang Y, Shen S (2014) Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces. Int Commun Heat Mass Transf 54:67–74

    Google Scholar 

  34. Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev 47(3):1815

    Google Scholar 

  35. Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of non-ideal fluids. Phys Rev Lett 75(5):830

    Google Scholar 

  36. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43(8):4320–4327

    Google Scholar 

  37. He X, Shan X, Doolen GD (1998) A discrete Boltzmann equation model for non-ideal gases. Phys Rev E 57:R13

    Google Scholar 

  38. He X, Doolen GD (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107(1–2):309–328

    MATH  Google Scholar 

  39. He X, Chen S, Zhang R (1999) A Lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J Comput Phys 152(2):642–663

    MathSciNet  MATH  Google Scholar 

  40. Zhang R, He X, Chen S (2000) Interface and surface tension in incompressible lattice Boltzmann multiphase model. Comput Phys Commun 129(1–3):121–130

    MathSciNet  MATH  Google Scholar 

  41. Premnath KN, Abraham J (2005) Lattice Boltzmann simulations of drop–drop interactions in two-phase flows. Int J Mod Phys C 16(1):25–44

    MATH  Google Scholar 

  42. Zhang R, He X, Doolen G, Chen S (2001) Surface tension effects on two-dimensional two-phase Kelvin-Helmholtz instabilities. Adv Water Resour 24(3–4):461–478

    Google Scholar 

  43. Komrakova AE, Shardt O, Eskin D, Derksen JJ (2014) Lattice Boltzmann simulations of drop deformation and breakup in shear flow. Int J Multiph Flow 59:24–43

    Google Scholar 

  44. Wang N, Liu H, Zhang C (2017) Deformation and breakup of a confined droplet in shear flows with power-law rheology. J Rheol 61(4):741–758

    Google Scholar 

  45. Fakhari A, Rahimian MH (2009) Simulation of falling droplet by the Lattice Boltzmann method. Commun Nonlinear Sci Numer Simul 14(7):3046–3055

    MATH  Google Scholar 

  46. Fakhari A, Rahimian MH (2011) Investigation of deformation and breakup of a falling droplet using a multiple-relaxation-time lattice Boltzmann method. Comput Fluids 40(1):156–171

    MATH  Google Scholar 

  47. Bararnia H, Ganji DD (2013) Breakup and deformation of a falling droplet under high voltage electric field. Adv Powder Technol 24(6):992–998

    Google Scholar 

  48. Shen S, Bi F, Guo Y (2012) Simulation of droplets impact on curved surfaces with lattice Boltzmann method. Int J Heat Mass Transf 55(23–24):6938–6943

    Google Scholar 

  49. Gac JM, Gradon L (2014) Lattice-Boltzmann modeling of collisions between droplets and particles. Colloids Surf A 441:831–836

    Google Scholar 

  50. Zhang D, Papadikis K, Gu S (2014) Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces. Int J Therm Sci 84:75–85

    Google Scholar 

  51. Raman KA, Jaiman RK, Lee TS, Low HT (2016) Lattice Boltzmann study on the dynamics of successive droplets impact on a solid surface. Chem Eng Sci 145:181–195

    Google Scholar 

  52. Chen L, Kang Q, Mu Y, He YL, Tao WQ (2014) A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int J Heat Mass Transf 76:210–236

    Google Scholar 

  53. Hyväluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100(24):246001

    Google Scholar 

  54. Li H, Pan C, Miller CT (2005) Pore-scale investigation of viscous coupling effects for two-phase flow in porous media. Phys Rev E 72:026705

    Google Scholar 

  55. Baakeem SS, Bawazeer SA, Mohamad AA (2020) Comparison and evaluation of Shan-Chen model and most commonly used equations of state in multiphase lattice Boltzmann method. Int J Multiph Flow 128:103290

    MathSciNet  Google Scholar 

  56. Li Q, Luo KH (2013) Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys Rev E 88(5):053307

    Google Scholar 

  57. McCracken ME, Abraham J (2005) Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys Rev E 71:036701

    Google Scholar 

  58. Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:021509

    MathSciNet  MATH  Google Scholar 

  59. Li Q, Luo KH, Kang QJ, Chen Q (2014) Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys Rev E 90:053301

    Google Scholar 

  60. Zhao W, Zhang Y, Shang W, Wang Z, Xu B, Jiang S (2019) Simulation of droplet impacting a square solid obstacle in microchannel with different wettability by using high density ratio pseudopotential multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). Can J Phys 97(1):93–113

    Google Scholar 

  61. Li Q, Luo K, Li X (2012) Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys Rev E 86(1):016709

    Google Scholar 

  62. Zhang D, Papadikis K, Gu S (2014) Investigations on the droplet impact onto a spherical surface with a high density ratio multi-relaxation time lattice-Boltzmann model. Commun Comput Phys 16(4):892–912

    MathSciNet  MATH  Google Scholar 

  63. Li Q, Luo K, Li X (2013) Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys Rev E 87(5):053301

    Google Scholar 

  64. Yu Z, Fan LS (2010) Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys Rev E 82(4):046708

    Google Scholar 

  65. Sayyari MJ, Naghedifar SA, Esfahani JA (2020) Pinch-off location and time during 2D droplet impact onto a wetted stationary cylinder using the lattice Boltzmann method. J Braz Soc Mech Sci Eng 42(3):1–13

    Google Scholar 

  66. Yuan P, Schaefer L (2006) Equations of state in a lattice Boltzmann model. Phys Fluids 18(4):042101

    MathSciNet  MATH  Google Scholar 

  67. Xu A, Zhao T, An L, Shi L (2015) A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int J Heat Fluid Flow 56:261–271

    Google Scholar 

  68. Fakhari A, Bolster D (2017) Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: a lattice Boltzmann model for large density and viscosity ratios. J Comput Phys 334:620–638

    MathSciNet  MATH  Google Scholar 

  69. Lamb H (1994) Hydrodynamics, 6th edn. Dover, New York, pp 366–369

    Google Scholar 

  70. Mukherjee S, Abraham J (2007) A pressure-evolution-based multi-relaxation-time high-density-ratio two-phase lattice-Boltzmann model. Comput Fluids 36(6):1149–1158

    MATH  Google Scholar 

  71. Yong HK, Choi W, Lee JS (2011) Water droplet properties on periodically structured superhydrophobic surfaces: a lattice Boltzmann approach to multiphase flows with high water/air density ratio. Microfluid Nanofluid 10:173–185

    Google Scholar 

  72. Banitabaei A, Amirfazli A (2017) Droplet impact onto a solid sphere: effect of wettability and impact velocity. Phys Fluids 29:419–441

    Google Scholar 

  73. Wu Y, Gui N, Yang X, Tu J, Jiang S (2018) Improved stability strategies for pseudo-potential models of lattice Boltzmann simulation of multiphase flow. Int J Heat Mass Transf 125:66–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahman Dadvand.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshan, M., Wörner, M. & Dadvand, A. Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method. Comp. Part. Mech. 8, 973–991 (2021). https://doi.org/10.1007/s40571-020-00384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00384-9

Keywords

Navigation