Skip to main content
Log in

Studies on optical signal due to oxygen effect on hydrogenated amorphous/crystalline silicon thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the effects of oxygen on hydrogenated amorphous/crystalline silicon films in terms of their structural and optical properties. Different “hydrogenated silicon oxide” (SiO:H) and “silicon” (Si:H) films are fabricated between microcrystalline and amorphous transition region. X-ray diffraction, Raman, FTIR and UV–VIS emission spectrometry have been used to characterize different films. A comparison of the results with those of different types of films like “hydrogenated amorphous silicon oxide” (a-SiO:H), “hydrogenated amorphous silicon” (a-Si:H) and “microcrystalline silicon” (μc-Si:H) films reveal their superiority as an excellent substance for solar cell. X-ray diffraction, FTIR, and Raman spectral analysis show that difference of the H dilution effect has a major effect on the structure of the film and the optical properties. Photoluminescence analysis of amorphous silicon–oxygen and silicon-hydride alloy films has established their efficient application appropriate as Si-based light-emitting devices. A large optical band gap of 1.83 eV and appearance of strong photoluminescence at 2.0 eV validates the applicability of a-SiO:H film as a better alternative for the solar cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Tomar, A. Agrawal, V.S. Dhaka, P.K. Surolia, Ruthenium complexes based dye sensitized solar cells: fundamentals and research trends. Sol. Energy. 207, 59–76 (2020)

    Article  ADS  Google Scholar 

  2. R.C. Chittick, J.H. Alexander, H.F. Sterling, The preparation and properties of amorphous silicon. J. Electrochem. Soc. 116, 77–81 (1969)

    Article  ADS  Google Scholar 

  3. D.E. Carlson, C.R. Wronski, Amorphous silicon solar cells. Appl. Phys. Lett. 28, 671–673 (1976)

    Article  ADS  Google Scholar 

  4. E.A. Schiff, S. Hegedus, X. Deng, Amorphous silicon-based solar cells. Handb Photovolt Sci Eng, 487–545 (2011)

  5. J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, A. Romeo, Flexible CIGS, CdTe and a-Si: H based thin film solar cells: a review. Prog. Mater. Sci. 110, 100619 (2020)

    Article  Google Scholar 

  6. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    Article  Google Scholar 

  7. M.A. Vanĕček, A. Poruba, Z. Remeš, N. Beck, M. Nesládek, Optical properties of microcrystalline materials. J. Non-Cryst. Solids. 967, 227–230 (1998)

    Google Scholar 

  8. K. Sriprapha, N. Sitthiphol, P. Sangkhawong, V. Sangsuwan, A. Limmanee, J. Sritharathikhun, p-Type hydrogenated silicon oxide thin film deposited near amorphous to microcrystalline phase transition and its application to solar cells. Curr. Appl. Phys. 11, S47–S49 (2011)

    Article  ADS  Google Scholar 

  9. G. Hagedorn, Hidden energy in solar cells and photovoltaic power stations. in Proceedings of the 9th European solar energy conference, Freiburg 542–545 (1989)

  10. Y. Zhao, X. Zhang, L. Bai, B. Yan, Hydrogenated microcrystalline silicon thin films. Handb. .Photovolt. Silicon. 693, 756 (2019)

    Google Scholar 

  11. T. Tabuchi, Y. Toyoshima, S. Fujimoto, M. Takashiri, Optimized hydrogen concentration within a remotely induced hollow-anode plasma for fast chemical-vapor-deposition of photosensitive and< 110>-preferential microcrystalline silicon thin-films. Thin Solid Films 694, 137714 (2020)

    Article  ADS  Google Scholar 

  12. S. Mandal, G. Das, S. Dhar, R.M. Tomy, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Development of a novel fluorinated n-nc-SiO: H material for solar cell application. Mater. Chem. Phys. 157, 130–137 (2015)

    Article  Google Scholar 

  13. H.P. Ma, H.L. Lu, J.H. Yang, X.X. Li, T. Wang, W. Huang, D.W. Zhang, Measurements of microstructural, chemical, optical, and electrical properties of silicon-oxygen-nitrogen films prepared by plasma-enhanced atomic layer deposition. Nanomaterials 8, 1008 (2018)

    Article  Google Scholar 

  14. D. Das, S.M. Iftiquar, A.K. Barua, Wide optical-gap a-SiO: H films prepared by rf glow discharge. J. Non-Cryst. Solids. 210, 148–154 (1997)

    Article  ADS  Google Scholar 

  15. P.W. Chen, P.L. Chen, C.C. Tsai, Development of wider bandgap n-type a-SiO x: H and μc-SiO x: H as both doped and intermediate reflecting layer for a-Si: H/a-Si 1–x Gex: H tandem solar cells. Electron. Mater. Lett. 12, 445 (2016)

    Article  ADS  Google Scholar 

  16. M. Zhu, Y. Han, C. Godet, R.B. Wehrspohn, Photoluminescence from hydrogenated amorphous silicon oxide thin films. J. Non-Cryst. Solids 254, 74–79 (1999)

    Article  ADS  Google Scholar 

  17. A.S. Ogale, S.B. Ogale, R. Ramesh, T. Venkatesan, Octahedral cation site disorder effects on magnetization in double-perovskite Sr 2 FeMoO 6: Monte Carlo simulation study. Appl. Phys. Lett. 75(4), 537–539 (1999)

    Article  ADS  Google Scholar 

  18. H. Tan, P. Babal, M. Zeman, A.H. Smets, Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells. Sol. Energy. Mater. Sol. Cells. 132, 597–605 (2015)

    Article  Google Scholar 

  19. V. Smirnov, A. Lambertz, S. Moll, M. Bär, D.E. Starr, R.G. Wilks, M. Gorgoi, A. Heidt, M. Luysberg, B. Holländer, F. Finger, Doped microcrystalline silicon oxide alloys for silicon-based photovoltaics: optoelectronic properties, chemical composition, and structure studied by advanced characterization techniques. Phys. Status. Solidi. (a) 213, 1814–1820 (2016)

    Article  ADS  Google Scholar 

  20. M. Klingsporn, S. Kirner, C. Villringer, D. Abou-Ras, I. Costina, M. Lehmann, B. Stannowski, Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells. J. Appl. Phys. 119, 223104 (2016)

    Article  ADS  Google Scholar 

  21. Y. Chen, J. Wang, J. Lu, W. Zheng, J. Gu, S. Yang, X. Gao, Microcrystalline silicon grown by VHF PECVD and the fabrication of solar cells. Sol. Energy. 82, 1083–1087 (2008)

    Article  ADS  Google Scholar 

  22. S. Klein, T. Repmann, T. Brammer, Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD. Sol. Energy. 77, 893–908 (2004)

    Article  ADS  Google Scholar 

  23. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution. J. Appl. Phys. 80, 4971 (1996)

    Article  ADS  Google Scholar 

  24. J. Yang, X. Xu, S. Guha (1994) Stability studies of hydrogenated amorphous silicon alloy solar cells prepared with hydrogen dilution. in Symposium A – amorphous silicon technology – 1994, MRS Online Proceedings Library, 33:687

  25. A. Asano, Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films. Appl. Phys. Lett. 56, 533 (1990)

    Article  ADS  Google Scholar 

  26. G. Das, S. Bose, S. Mukhopadhyay, C. Banerjee, A.K. Barua, Innovative utilization of improved n-doped μc-SiO x: H films to amplify the performance of micromorph solar cells. Silicon. 11, 487–493 (2019)

    Article  Google Scholar 

  27. R.A. Vargas-Ortiz, F.J. Espinoza-Beltran, Structural and chemical composition of si-al oxy-nitride coatings produced by reactive dc magnetron sputtering. Adv. Technol. Mater .Mater. Process. J. 7, 87–90 (2005)

    Google Scholar 

  28. S. Polosan, A.C. Galca, M. Secu, Band-gap correlations in Bi4Ge3O12 amorphous and glass ceramic materials. Solid. State. Sci. 13, 49–53 (2011)

    Article  ADS  Google Scholar 

  29. H. Zhao, F. De Geuser, A.K. da Silva, A. Szczepaniak, B. Gault, D. Ponge, D. Raabe, Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy. Acta. Mater. 156, 318–329 (2018)

    Article  ADS  Google Scholar 

  30. H.R. Philipp, Optical and bonding model for non-crystalline SiOx and SiOxNy materials. J. Non-Cryst. Solids. 8, 627–632 (1972)

    Article  ADS  Google Scholar 

  31. D. Borchert, G. Grabosch, W.R. Fahrner, Preparation of (n) a-Si: H/(p) c-Si heterojunction solar cells. Sol. Energy. Mater. Sol. Cells. 49, 53–59 (1997)

    Article  Google Scholar 

  32. H. Watanabe, K. Haga, T. Lohner, Structure of high-photosensitivity silicon-oxygen alloy films. J. Non-Cryst. Solids. 164, 1085–1088 (1993)

    Article  ADS  Google Scholar 

  33. A. Richter, V. Smirnov, A. Lambertz, K. Nomoto, K. Welter, K. Ding, Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells. Sol. Energy. Mater. Sol. Cells. 1(174), 196–201 (2018)

    Article  Google Scholar 

  34. L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  35. A.J. Kenyon, P.F. Trwoga, C.W. Pitt, G. Rehm, The origin of photoluminescence from thin films of silicon-rich silica. J. Appl. Phys. 79, 9291–9300 (1996)

    Article  ADS  Google Scholar 

  36. X. Zhao, O. Schoenfeld, S. Komuro, Y. Aoyagi, T. Sugano, Quantum confinement in nanometer-sized silicon crystallites. Phys. Rev. B. 50, 18654 (1994)

    Article  ADS  Google Scholar 

  37. H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, S. Wang, Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics. 13, 192–197 (2019)

    Article  ADS  Google Scholar 

  38. K. Xu, Y. Chen, T.A. Okhai, L.W. Snyman, Micro optical sensors based on avalanching silicon light-emitting devices monolithically integrated on chips. Optical. Mater. Express. 9, 3985–3997 (2019)

    Article  ADS  Google Scholar 

  39. T. Kanashima, M. Okuyama, Y. Hamakawa, Photoluminescence of SiO2 films grown by photo-induced chemical vapor deposition. Appl. Surf. Sci. 79, 321–326 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papia Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M., Banerjee, C. & Chowdhury, P. Studies on optical signal due to oxygen effect on hydrogenated amorphous/crystalline silicon thin films. Appl. Phys. A 127, 192 (2021). https://doi.org/10.1007/s00339-021-04322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04322-1

Keywords

Navigation