Skip to main content
Log in

Navier–Stokes Regularity Criteria in Vishik Spaces

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we consider the conditional regularity for the 3D incompressible Navier–Stokes equations in Vishik spaces in terms of only two components of the vorticity vector, or scalar pressure. These results will be regarded an improvement of the results given by Zhang–Chen (J Differ Equ 216(2):470–481, 2005), Fan–Jiang–Ni (J Differ Equ 244(11):2963–2979, 2008) and Kanamaru (J Evol Equ 1–17, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, New York (2011)

    Book  Google Scholar 

  2. Berselli, L.: Some geometric constraints and the problem of global regularity for the Navier-Stokes equations. Nonlinearity 22(10), 2561 (2009)

    Article  MathSciNet  Google Scholar 

  3. Berselli, L., Galdi, G.: Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. Proc. Am. Math. Soc. 130(12), 3585–3595 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cai, Z., Fan, J., Zhai, J.: Regularity criteria in weak spaces for 3-dimensional Navier-Stokes equations in terms of the pressure. Differ. Integr. Equ. 23(11/12), 1023–1033 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Chae, D., Choe, H.: Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ. 05, 1–7 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chae, D., Lee, J.: On the geometric regularity conditions for the 3D Navier-Stokes equations. Nonlinear Anal. 151, 265–273 (2017)

    Article  MathSciNet  Google Scholar 

  7. Constantin, P., Fefferman, C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42(3), 775–789 (1993)

    Article  MathSciNet  Google Scholar 

  8. Da Veiga, H.: A new regularity class for the Navier-Stokes equations in \(\mathbb{R}^n\). Chin. Ann. Math. Ser. B 16(4), 407–412 (1995)

    MATH  Google Scholar 

  9. Da Veiga, H., Berselli, L.: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differ. Integr. Equ. 15(3), 345–356 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Dong, B., Chen, Z.: Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components. J. Math. Anal. Appl. 338(1), 1–10 (2008)

    Article  MathSciNet  Google Scholar 

  11. Escauriaza, L., Seregin, G.: \(L_{3,\infty }\)-solutions of the Navier-Stokes equations and backward uniqueness. Nonlinear Probl. Math. Phys. Rel. Top. II(18), 353–366 (2003)

    MATH  Google Scholar 

  12. Fan, J., Jiang, S., Ni, G.: On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure. J. Differ. Equ. 244(11), 2963–2979 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fang, D., Qian, C.: Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Commun. Pure Applied Anal. 13(2), 585–603 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gala, S.: Remarks on regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure. Appl. Anal. 92(1), 96–103 (2013)

    Article  MathSciNet  Google Scholar 

  15. Guo, Z., Kucera, P., Skalák, Z.: Regularity criterion for solutions to the Navier-Stokes equations in the whole 3D space based on two vorticity components. J. Math. Anal. Appl. 458(1), 755–766 (2018)

    Article  MathSciNet  Google Scholar 

  16. He, X., Gala, S.: Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the pressure in the class \(L^2 (0, T; B^{-1}_{\infty , \infty } (\mathbb{R}^3))\). Nonlinear Anal. 12(6), 3602–3607 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. (German) Math. Nachr. 4, 213–231 (1951)

  18. Kanamaru, R.: Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in Vishik spaces. J. Evol. Equ. 1–17 (2020)

  19. Kozono, H., Yatsu, N.: Extension criterion via two-components of vorticity on strong solutions to the 3D Navier-Stokes equations. Math. Z. 246(1–2), 55–68 (2004)

    Article  MathSciNet  Google Scholar 

  20. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  21. Li, S.: Regularity of desingularized models for vortex filaments in incompressible viscous flows: a geometrical approach. Q. J. Mech. Appl. Math. 73(3), 217–230 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liu, Q., Dai, G.: On the 3D Navier-Stokes equations with regularity in pressure. J. Math. Anal. Appl. 458(1), 497–507 (2018)

    Article  MathSciNet  Google Scholar 

  23. Miller, E.: A regularity criterion for the Navier-Stokes equation involving only the middle eigenvalue of the strain tensor. Arch. Ration. Mech. Anal. 235(1), 99–139 (2020)

    Article  MathSciNet  Google Scholar 

  24. Neustupa, J., Penel, P.: On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier Slip boundary conditions. Adv. Math. Phys. 2018 (2018)

  25. Neustupa, J., Penel, P.: Regularity of a weak solution to the Navier-Stokes equation in dependence on eigenvalues and eigenvectors of the rate of deformation tensor. In: Trends in Partial Differential Equations of Mathematical Physics. Birkhäuser Basel, pp. 197–212 (2005)

  26. Neustupa, J., Penel, P.: Anisotropic and Geometric Criteria for Interior Regularity of Weak Solutions to the 3D Navier-Stokes Equations, pp. 237–265. Mathematical Fluid Mechanics. Birkhöuser, Basel (2001)

    MATH  Google Scholar 

  27. Neustupa, J., Penel, P.: The role of eigenvalues and eigenvectors of the symmetrized gradient of velocity in the theory of the Navier-Stokes equations. C.R. Math. 336(10), 805–810 (2003)

    Article  MathSciNet  Google Scholar 

  28. Penel, P., Pokorny, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. 49(5), 483–493 (2004)

    Article  MathSciNet  Google Scholar 

  29. Prodi, G.: Un teorema di unicita per le equazioni di Navier-Stokes. Ann. Mat. 48(1), 173–182 (1959)

    Article  MathSciNet  Google Scholar 

  30. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9(1), 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  31. Skalak, Z.: On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104, 84–89 (2014)

    Article  MathSciNet  Google Scholar 

  32. Struwe, M.: On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure. J. Math. Fluid Mech. 9(2), 235–242 (2007)

    Article  MathSciNet  Google Scholar 

  33. Wu, F.: Blowup criterion of strong solutions to the three-dimensional double-diffusive convection system. Bull. Malaysian Math. Sci. Soc. 1–14 (2019)

  34. Wu, F.: Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evol. Equ. Control Theory. https://doi.org/10.3934/eect.2020078

  35. Xu, F., Li, X., Cui, Y., et al.: A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations. Z. Angew. Math. Phys. 68(6), 125 (2017)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z.: A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Commun. Pure Appl. Anal. 12(1), 117–124 (2013)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z.: Navier-Stokes equations with regularity in one directional derivative of the pressure. Math. Methods Appl. Sci. 38(17), 4019–4023 (2015)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Z., Chen, Q.: Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in \(\mathbb{R}^3\). J. Differ. Equ. 216(2), 470–481 (2005)

    Article  Google Scholar 

  39. Zhang, X., Jia, Y., Dong, B.: On the pressure regularity criterion of the 3D Navier-Stokes equations. J. Math. Anal. Appl. 393(2), 413–420 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhang, Z., Yao, Z., Li, P., et al.: Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. Acta Appl. Math. 123(1), 43–52 (2013)

    Article  MathSciNet  Google Scholar 

  41. Zhou, Y.: On regularity criteria in terms of pressure for the Navier-Stokes equations in \(\mathbb{R}^3\). Proc. Am. Math. Soc. 134(1), 149–156 (2006)

    Article  Google Scholar 

  42. Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in \(\mathbb{R}^{N}\). Zeitschrift fur angewandte Mathematik und Physik ZAMP 57(3), 384–392 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge his sincere thanks to the editor and the referees for a careful reading of the manuscript and many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F. Navier–Stokes Regularity Criteria in Vishik Spaces. Appl Math Optim 84 (Suppl 1), 39–53 (2021). https://doi.org/10.1007/s00245-021-09757-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09757-9

Keywords

Mathematics Subject Classification

Navigation