Skip to main content

Advertisement

Log in

Soil Factors Related to within-Field Yield Variation in Commercial Potato Fields in Prince Edward Island Canada

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Stagnating potato tuber yields in Prince Edward Island (PEI) are a major economic concern. Identification of factors influencing within-field yield variation may provide insight into strategies for overcoming yield limitations. A survey approach was used where soil samples were collected from 49 commercial fields from 2014 to 2017 from a total of 289 sampling points, with points identified as having either “high” or “low” yield, determined by yield monitor as being 5.6–11.2 t ha−1 above or below average field yield, respectively. A suite of 33 measures of soil physical and chemical properties and soil pathogens were measured. Principal component analysis identified three principal components (PCs) which accounted for 85.6% of the total variation. The PC1 (reflecting 42.3% of the total variance) was associated primarily with soil texture (i.e., sand, clay) and parameters which were highly correlated with soil texture. Under the rainfed potato production on sandy-loam soils in PEI, finer soil texture is likely related to increased yield through its effect on improved soil water holding capacity. The PC2 (reflecting 29.0% of the total variance) was primarily associated with soil fertility and the PC3 (reflecting 14.4% of the total variance) was associated primarily with soil organic matter quality and soil structure. Although soil pathogens were measured at levels high enough to impact yield, they did not differ significantly between high and low yield locations. The findings of this study highlight the value in using multivariate approaches to overcome the challenges in identifying factors which control within-field yield variability.

Resumen

El estancamiento en el rendimiento de tubérculos de papa en la Isla del Príncipe Eduardo (PEI) es una preocupación económica importante. La identificación de los factores que están influenciando la variación en el rendimiento al interior del campo pudieran proporcionar una visión en estrategias para superar las limitaciones en el rendimiento. Se utilizó una estrategia de encuesta donde se colectaron muestras de suelo de 49 campos comerciales de 2014 a 2017 de un total de 289 puntos de muestreo, en donde los puntos se identificaron teniendo ya sea rendimiento “alto” o “bajo”, determinado por un monitor de rendimiento, siendo de 5.6 a 11.2 t ha-1 arriba o abajo del promedio del rendimiento de campo, respectivamente. Se cuantificó un paquete de 33 mediciones de las propiedades físicas y químicas del suelo, y de patógenos. El análisis de los componentes principales (PCs) identificó tres, que representó el 85.6% de la variación total. Se asoció al PC1 (reflejando 42.3% de la varianza total) primeramente con la textura del suelo (i.e. arena, arcilla) y con parámetros que estuvieron altamente correlacionados con la textura del suelo. Bajo las condiciones de secano en la producción de papa en suelos franco-arenosos en la PEI, la textura mas fina del suelo esta probablemente relacionada a incremento del rendimiento por vía de su efecto en el mejoramiento de la capacidad de retención de agua del suelo. El PC2 (reflejo del 29.0% de la variación total) estuvo asociado primeramente con la fertilidad del suelo, y el PC3 (reflejo del 14.4% de la varianza total) estuvo asociado primeramente con la calidad de la materia orgánica del suelo y la estructura del suelo. Aun cuando los patógenos del suelo se midieron a niveles lo suficientemente altos para impactar al rendimiento, no difirieron significativamente entre las localidades de alto y bajo rendimiento. Lo que se encontró en este estudio resalta el valor del uso de enfoques multivariados para superar los retos en la identificación de factores que controlan la variabilidad del rendimiento dentro del campo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angers, D.A., and G.R. Mehuys. 1993. Aggregate stability to water. In Soil sampling and methods of analysis, ed. M.R. Carter, 651–657. Ann Arbor, MI: Canadian Society of Soil Science, Lewis Publishers.

    Google Scholar 

  • Brevik, E.C., T.E. Fenton, and A. Lazari. 2006. Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agric. 7: 393–404.

    Article  Google Scholar 

  • Cambouris, A.N., M.C. Nolin, B.J. Zebarth, and M. Laverdière. 2006. Soil management zones delineated by electrical conductivity to characterize spatial and temporal variations in potato yield and in soil properties. American Journal of Potato Research 83: 381–395.

    Article  CAS  Google Scholar 

  • Carter, M.R., H.T. Kunelius, J.B. Sanderson, J. Kimpinski, H.W. Platt, and M.A. Bolinder. 2003. Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil Till. Res. 72: 153–168.

    Article  Google Scholar 

  • Culman, S.W., S.S. Snapp, M.A. Freeman, M.E. Schipanski, J. Beniston, R. Lal, L.E. Drinkwater, A.J. Franzluebbers, J.D. Glover, A.S. Grandy, and J. Lee. 2012. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management. Soil Science Society of America Journal 76: 494–504.

    Article  CAS  Google Scholar 

  • DeHaan, K.R., G.T. Vessey, D.A. Holmstrom, J.A. MacLeod, J.B. Sanderson, and M.R. Carter. 1999. Relating potato yield to the level of soil degradation using a bulk yield monitor and differential global positioning systems. Computers Electronics Agric. 23: 133–143.

    Article  Google Scholar 

  • Eijkelkamp. 2008. 08.13 Wet Sieving Apparatus Operating Instructions. https://en.eijkelknamp.com/products/laboratory-equipment/wet-sieving-apparatus.html (accessed 20 July 2017).

  • Environment and Climate Change Canada. 2020. Historical climate data. https://climate.weather.gc.ca/index_e.html. (accessed 30 September 2020).

  • Ettema, C.H., and D.A. Wardle. 2002. Spatial soil ecology. Trends in Ecology & Evolution 17: 177–183.

    Article  Google Scholar 

  • Farooque, A.A., M. Zare, F. Abbas, M. Bos, T. Esau, and Q. Zaman. 2019. Forecasting potato tuber yield using a soil electromagnetic induction method. European Journal of Soil Science 71: 880–897.

    Google Scholar 

  • Fine, A.K., H.M. van Es, and R.R. Schindelbeck. 2017. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Science Society of America Journal 81: 589–601.

    Article  CAS  Google Scholar 

  • Gregorich, E.G., and B.H. Ellert. 1993. Light fraction and macroorganic matter in mineral soils. In: M.R Carter, editor, 397–407. Boca Raton, Florida: Soil sampling and methods of analysis. CRC Press.

    Google Scholar 

  • Hargreaves, S.K., P. DeJong, K. Laing, T. McQuail, and L.L. Van Eerd. 2019. Management sensitivity, repeatability, and consistency of interpretation of soil health indicators on organic farms in southwestern Ontario. Canadian Journal of Soil Science 99: 508–519.

    Article  Google Scholar 

  • Heap, J.W., and A.C. McKay. 2009. Managing soil-borne crop diseases using precision agriculture in Australia. Crop and Pasture Sci. 60: 824–833.

    Article  Google Scholar 

  • Hess, J.R., and R.L. Hoskinson. 1996. Methods for characterization and analysis of spatial and temporal variability for researching and managing integrated farming systems. In Proceedings of the third international conference on precision agriculture, 641–650. Madison, WI: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

    Google Scholar 

  • Khan, H., B. Acharya, A.A. Farooque, F. Abbas, Q.U. Zaman, and T. Esau. 2020. Soil and crop variability induced management zones to optimize potato tuber yield. Applied Engineering in Agriculture 36: 499–510.

    Article  Google Scholar 

  • Kimpinski, J., and K.B. McRae. 1988. Relationship of yield and Pratylenchus spp. population densities in superior and russet Burbank potato. Journal of Nematology 20 (annals 2): 34–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimpinski, J., C.E. Gallant, R. Henry, J.A. Macleod, J.B. Sanderson, and A.V. Sturz. 2003. Effect of compost and manure soil amendments on nematodes and on yields of potato and barley: A 7-year study. J. Nematology 35: 289–293.

    CAS  Google Scholar 

  • Kroetsch, D., and C. Wang. 2008. Particle size distribution. In Soil sampling and methods of analysis, ed. R. Carter and E.G. Gregorich, 713–725. Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  • Larkin, R.P., C.W. Honeycutt, T.S. Griffin, O.M. Olanya, J.M. Halloran, and Z. He. 2011. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101: 58–67.

    Article  PubMed  Google Scholar 

  • Mallory, E.B., and G.A. Porter. 2007. Potato yield stability under contrasting soil management strategies. Agronomy Journal 99: 501–510.

    Article  CAS  Google Scholar 

  • Meurer, K.H.E., C. Chenu, E. Coucheney, A.M. Herrmann, T. Keller, T. Kätterer, D.N. Svensson, and N. Jarvis. 2020. Modelling dynamic interactions between soil structure and the storage and turnover of soil organic matter. Biogeosciences 17: 5025–5042.

    Article  CAS  Google Scholar 

  • PEI Department of Agriculture and Land. 2020. The Prince Edward Island potato sector: An economic impact analysis. Government of Prince Edward Island Canada. www.princeedwardisland.ca/sites/default/files/publications/af_potato_econ_impact_study.pdf

  • Perron, I., A.N. Cambouris, K. Chokmani, M.F. Vargas Gutierrez, B.J. Zebarth, G. Moreau, V. Adamchuk, and A. Biswas. 2018. Delineating soil management zones using a proximal soil sensing system in two commercial potato fields in New Brunswick. Canada. Can. J. Soil Sci. 98: 724–737.

    Article  Google Scholar 

  • Po, E.A., S.S. Snapp, and A. Kravchenko. 2010. Potato yield variability across the landscape. Agronomy Journal 102: 885–894.

    Article  Google Scholar 

  • Redulla, C.A., J.R. Davenport, R.G. Evans, M.J. Hattendorf, A.K. Alva, and R.A. Boydston. 2002. Relating potato yield and quality to field scale variability in soil characteristics. American Journal of Potato Research 79: 317–323.

    Article  Google Scholar 

  • Robb, J., R. Moukhamedov, X. Hu, H. Platt, and R.N. Nazar. 1993. Putative subgroups of Verticillium albo-atrum distinguishable by PCR-based assays. Physiological and Molecular Plant Pathology 43: 423–436.

    Article  CAS  Google Scholar 

  • Rowe, R.C., and M.L. Powelson. 2002. Potato early dying: Management challenges in a changing production environment. Plant Disease 86: 1184–1193.

    Article  PubMed  Google Scholar 

  • Sharifi, M., B.J. Zebarth, D.L. Burton, C.A. Grant, and J.M. Cooper. 2007. Evaluation of some indices of potentially mineralizable nitrogen in soil. Soil Science Society of America Journal 71: 1233–1239.

    Article  CAS  Google Scholar 

  • Stark, J.C., and G.A. Porter. 2005. Potato nutrient management in sustainable cropping systems. American Journal of Potato Research 82: 329–338.

    Article  Google Scholar 

  • Starr, G.C. 2005. Assessing temporal stability and spatial variability of soil water patterns with implications for precision water management. Agricultural Water Management 72: 223–243.

    Article  Google Scholar 

  • Statistics Canada. 2018. Area, production and farm value of potatoes [online]. Available at https://www150.statcan.gc.ca/(accessed 20 Sept. 2016; verified 12 Nov. 2018).

  • Statistics Canada. 2020. Area, production and farm value of potatoes. www150.statcan.gc.ca (accessed 24 Nov. 2020).

  • VSN International. 2019. Genstat for windows 20th edition. VSN international, Hemel Hempstead, UK. Web page: Genstat.co.uk.

  • Weil, R.R., K.R. Islam, M.A. Stine, J.B. Gruver, and S.E. Samson-Liebig. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. Am. J. Alternative Agric. 18: 3–17.

    Article  Google Scholar 

  • Wilson, C., B.J. Zebarth, D.L. Burton, and C. Goyer. 2018. Effect of diverse compost products on soil quality in potato production. Soil Science Society of America Journal 82: 889–900.

    Article  CAS  Google Scholar 

  • Zare, M., A. Farooque, F. Abbas, Q. Zaman, and M. Bos. 2019. Trends in the variability of potato tuber yield under selected land and soil characteristics. Plant, Soil and Environment 65: 111–117.

    Article  CAS  Google Scholar 

  • Zebarth, B.J., M.M. Islam, A.N. Cambouris, I. Perron, D.L. Burton, L.-P. Comeau, and G. Moreau. 2019. Spatial variation of soil health indices in a commercial potato field in eastern Canada. Soil Science Society of America Journal 83: 1786–1798.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the collaborative efforts put forth by the three participating growers: Island Holdings, MacLennan Properties and Willard Waugh & Sons. Claude Gallant and Bud Platt provided technical support for the project. Karen Terry, Ginette Decker and Kyle MacKinley performed laboratory analyses. Funding for this project was supplied by the PEI Potato Board, the PEI Department of Agriculture & Fisheries Applied Research and Innovation Program (ARIP), and the Agriculture and Agri-Food Canada Agri-Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernie J. Zebarth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zebarth, B.J., Fillmore, S., Watts, S. et al. Soil Factors Related to within-Field Yield Variation in Commercial Potato Fields in Prince Edward Island Canada. Am. J. Potato Res. 98, 139–148 (2021). https://doi.org/10.1007/s12230-021-09825-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-021-09825-4

Keywords

Navigation