Skip to main content
Log in

Numerical modelling of saturated boundless media with infinite elements

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Based on the elastic theory assumptions and averaging theories, an infinite element boundary which is frequency independent is derived for saturated soil media. The infinite element development is based on mapping functions and viscous layers for damping propagating waves of both solid and water phases. The newly developed infinite element is able to simulate the boundaries of fully saturated soil medium considering both soil displacement and fluid pressures. The main point is that the fluid pressure gradient at infinity is taken to equal to zero thus enabling the realistic consideration of the fluid pressures in numerical simulations. In numerical modelling, the general finite element software ANSYS using its User Programmable Features is used. Related comparisons are done with references. In simulation of propagating waves, the numerical approach is verified considering different models. The verification models include wave propagation through a saturated soil column. The implementation of the newly developed infinite element is done by simulation of an earth fill dam boundaries while the dam body is simulated as a three-phase medium. The obtained results from simulations show promising results and are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Albers B, Wilmanski K (2006) Influence of coupling through porosity changes on the propagation of acoustic waves in linear poroelastic materials. Archive Mech 58(4–5):313–325

    MathSciNet  MATH  Google Scholar 

  2. ANSYS (2006) Fem software

  3. Askar H (1993) Stresses in ground-freezing problems with infinite boundaries. J Eng Mech 119(1):58–73

    Article  Google Scholar 

  4. Astley RJ (2000) Infinite elements for wave problems: a review of current formulations and an assessment of accuracy. Int J Numer Methods Eng 49(7):951–976

    Article  MathSciNet  Google Scholar 

  5. Bathe KJ (1982) Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. Bettess P, Elements I (1992) New castle. Penshaw Press, England

    Google Scholar 

  7. Edip K (2013) Development of three phase model with finite and infinite elements for dynamic analysis of soil media. In: Ss. Cyril and Methodius. Institute of Earthquake Engineering and Engineering Seismology.

  8. Edip K et al (2018) Coupled approach in simulation of earth dam. In: 16th European conference on earthquake engineering 2018. The European Association for Earhtquake Engineering, Thessaloniki, Greece

  9. Häggblad B, Nordgren G (1987) Modelling nonlinear soil-structure interaction using interface elements, elastic-plastic soil elements and absorbing infinite elements. Comput Struct 26(1–2):307–324

    Article  Google Scholar 

  10. Heider Y, Markert B, Ehlers W (2010) Dynamic wave propagation in porous media semi-infinite domains. PAMM 10(1):499–500

    Article  Google Scholar 

  11. Kausel E (2010) Early history of soil–structure interaction. Soil Dyn Earthq Eng 30(9):822–832

    Article  Google Scholar 

  12. Liao Z-P (1996) Extrapolation non-reflecting boundary conditions. Wave Motion 24(2):117–138

    Article  MathSciNet  Google Scholar 

  13. Lysmer J, Kuhlmeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech Div 95:859–877

    Article  Google Scholar 

  14. Manolis G, Ahmad S, Banerjee P (1986) Boundary element method implementation for three-dimensional transient elastodynamics. In: Developments in boundary element methods- 4(A 86-38966 18-31). Elsevier Applied Science Publishers, London and New York, pp 29–65.

  15. Medina F, Penzien J (1982) Infinite elements for elastodynamics. Earthq Eng Struct Dyn 10(5):699–709

    Article  Google Scholar 

  16. Mesgouez A, Lefeuve-Mesgouez G (2009) Study of transient poroviscoelastic soil motions by semi-analytical and numerical approaches. Soil Dyn Earthq Eng 29(2):245–248

    Article  Google Scholar 

  17. Oettl G (2003) A three-phase FE-model for dewatering of soils by means of compressed air. Universitaet Innsbruck

  18. Pastor M et al (1999) Stabilized finite elements with equal order of interpolation for soil dynamics problems. Arch Comput Methods Engineering 6(1):3–33

    Article  MathSciNet  Google Scholar 

  19. Schrefler B, Simoni L (1987) Non-isothermal consolidation of unbounded porous media using mapped infinite elements. Commun Appl Numer Methods 3(5):445–452

    Article  Google Scholar 

  20. Simoni L, Schrefler BA (1987) Mapped infinite elements in soil consolidation. Int J Numer Methods Eng 24(3):513–527

    Article  Google Scholar 

  21. Zhao C, Valliappan S (1993) A dynamic infinite element for three-dimensional infinite-domain wave problems. Int J Numer Meth Eng 36(15):2567–2580

    Article  Google Scholar 

  22. Zienkiewicz OC, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19(3):393–404

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Edip.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The mass matrices are given as follows:

$$ {\mathbf{M}} = \smallint {\mathbf{N}}_{{\mathbf{u}}} \left[ {\rho_{s} \left( {1 - n} \right) + nS_{w} \rho_{w} } \right]{\mathbf{N}}_{{\mathbf{u}}} \;{\text{d}}\Omega $$
$$ {\mathbf{M}}_{{\varvec{f}}} = \smallint \nabla {\mathbf{N}}_{{\mathbf{p}}}^{{\text{T}}} \frac{{{\mathbf{k}}k_{rf} }}{{\eta_{f} }}{\mathbf{N}}_{{\mathbf{u}}} \;{\text{d}}\Omega $$

The coupling matrix follows as:

$$ {\mathbf{C}}_{{{\text{sf}}}} = \smallint {\mathbf{N}}_{p}^{T} \alpha S_{f} m^{T} {\mathbf{LN}}_{{\mathbf{u}}} \;{\text{d}}\Omega $$

The compressibility matrix is given as:

$$ {\mathbf{P}}_{{{\text{ff}}}} = \smallint {\mathbf{N}}_{p}^{T} \left[ {\frac{{S_{f} }}{{K_{f} }} + \left( {\alpha - n} \right)\frac{{S_{f} }}{{K_{s} }}\left( {S_{f} + p_{c} \frac{{\partial S_{f} }}{{\partial p_{c} }}} \right) - n\frac{{\partial S_{f} }}{{\partial p_{c} }}} \right]{\mathbf{N}}_{{\mathbf{p}}} \;{\text{d}}\Omega $$

The permeability matrix can be written as:

$$ {\mathbf{H}}_{{{\varvec{ff}}}} = \smallint \nabla {\mathbf{N}}_{{\mathbf{p}}}^{{\text{T}}} \frac{{{\mathbf{k}}k_{rf} }}{{\eta_{f} }}\nabla {\mathbf{N}}_{{\mathbf{p}}} \;{\text{d}}\Omega $$

The domain forces follow as:

$$ f_{u} = \smallint {\mathbf{N}}_{{\text{u}}} \left[ {\rho_{s} \left( {1 - n} \right) + nS_{f} \rho_{f} } \right]{\mathbf{gN}}_{{\mathbf{u}}} \;{\text{d}}\Omega $$
$$ {\varvec{f}}_{f} = \smallint {\mathbf{N}}_{{\mathbf{p}}}^{{\text{T}}} \frac{{{\mathbf{k}}k_{rf} }}{{\eta_{f} }}\rho_{f} {\mathbf{g}}\;{\text{d}}\Omega $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edip, K., Sheshov, V., Wu, W. et al. Numerical modelling of saturated boundless media with infinite elements. Acta Geotech. 16, 2683–2692 (2021). https://doi.org/10.1007/s11440-020-01139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01139-9

Keywords

Navigation