Issue 11, 2021

Effect of stretching angle on the stress plateau behavior of main-chain liquid crystal elastomers

Abstract

The equilibrium nonlinear stress–stretch relationships for a monodomain main-chain nematic elastomer (MNE) are investigated by varying the angle between the stretching and initial director axes (θ0). Angle θ0 has pronounced effects on the ultimate elongation as well as on the width of the low stress plateau regime (Λp) during director rotation, whereas θ0 has no appreciable effect on the plateau stress (σp). In the stretching normal to the initial director (θ0 = 90°), the plateau end exceeds 200% strain. At oblique angles of 90° > θ0 ≥ 35°, Λp decreases with decreasing θ0, whereas the definite plateau regime vanishes at θ0 < 24°. Wide-angle X-ray scattering and polarized optical microscopy measurements reveal that the director rotates uniformly in the biased direction for the MNE of θ0° ≪ 90°, whereas directors rotating clockwise and counterclockwise are coexistent for θ0 = 90°. Over the entire plateau regime, the MNEs exhibit pure shear deformation characterized by a Poisson's ratio of zero in the direction of the rotation axis. The Λp for the corresponding polydomain NE (PNE) undergoing a transition to the monodomain alignment is smaller than that of the MNE of θ0 = 90°, while the σp values for both NEs are almost similar. The semi-soft elasticity concept satisfactorily explains the effects of θ0 on Λp, and the Λp value of the PNE, using a single anisotropy parameter which is evaluated from the degree of thermally induced deformation of MNEs.

Graphical abstract: Effect of stretching angle on the stress plateau behavior of main-chain liquid crystal elastomers

Article information

Article type
Paper
Submitted
21 Dec 2020
Accepted
31 Jan 2021
First published
18 Feb 2021

Soft Matter, 2021,17, 3128-3136

Effect of stretching angle on the stress plateau behavior of main-chain liquid crystal elastomers

S. Okamoto, S. Sakurai and K. Urayama, Soft Matter, 2021, 17, 3128 DOI: 10.1039/D0SM02244F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements