Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Persistent CO2 photocatalysis for solar fuels in the dark

Abstract

The hydrogenation of CO2 to hydrocarbon fuels via solar radiation offers a sustainable pathway towards a carbon-neutral energy cycle. However, the reaction is hindered by the intermittent availability of sunlight. This critical issue could be mitigated by engineering a materials system, known as persistent photocatalysis, that prolongs solar fuel production during overcast periods and into the evenings. During illumination, charge can be stored in a suitable capacitor or battery-like material that interfaces with the photocatalyst, while discharging occurs postillumination to continue driving the catalytic reaction. We discuss emerging trends and materials strategies to develop these catalyst systems and prolong the operation of photocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Problems associated with clouds and duck curve.
Fig. 2: Mechanism of persistent photocatalysis and materials strategies in the literature.
Fig. 3: Materials engineering of suitable photocatalysts and pseudocapacitor systems.
Fig. 4: Band diagrams and morphologies of proposed structures for persistent CO2 photocatalysis.

Similar content being viewed by others

References

  1. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  2. Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Sci. Rep. 10, 11002 (2020).

    Article  Google Scholar 

  3. Net Zero by 2050: From Whether to How (European Climate Foundation, 2018); https://europeanclimate.org/

  4. Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019).

    Article  CAS  Google Scholar 

  5. Ganesh, I. Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 31, 221–257 (2014).

    Article  CAS  Google Scholar 

  6. Lewis, N. S. An integrated, systems approach to the development of solar fuel generators. Electrochem. Soc. Interface 22, 43–49 (2013).

    Article  CAS  Google Scholar 

  7. Matuszko, D. Influence of the extent and genera of cloud cover on solar radiation intensity. Int. J. Climatol. 32, 2403–2414 (2012).

    Article  Google Scholar 

  8. Detz, R. J., Reek, J. N. H. & Van Der Zwaan, B. C. C. The future of solar fuels: when could they become competitive? Energy Environ. Sci. 11, 1653–1669 (2018).

    Article  CAS  Google Scholar 

  9. McCormick, P. G. & Suehrcke, H. The effect of intermittent solar radiation on the performance of PV systems. Sol. Energy 171, 667–674 (2018).

    Article  Google Scholar 

  10. Suri, M., Cebecauer, T. & Skoczek, A. Cloud cover impact on photovoltaic power production in South Africa. S. Afr. Sol. Energy Conf. 8, 1–8 (2014).

    Google Scholar 

  11. Sakar, M., Nguyen, C. C., Vu, M. H. & Do, T. O. Materials and mechanisms of photo‐assisted chemical reactions under light and dark conditions: can day–night photocatalysis be achieved? ChemSusChem 11, 809–820 (2018).

    Article  CAS  Google Scholar 

  12. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    Article  CAS  Google Scholar 

  13. Costentin, C., Porter, T. R. & Savéant, J. M. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl. Mater. Interfaces 9, 8649–8658 (2017).

    Article  CAS  Google Scholar 

  14. Takahashi, Y. & Tatsuma, T. Oxidative energy storage ability of a TiO2–Ni(OH)2 bilayer photocatalyst. Langmuir 21, 12357–12361 (2005).

    Article  CAS  Google Scholar 

  15. Kim, S., Park, Y., Kim, W. & Park, H. Harnessing and storing visible light using a heterojunction of WO3 and CdS for sunlight-free catalysis. Photochem. Photobiol. Sci. 15, 1006–1011 (2016).

    Article  CAS  Google Scholar 

  16. Liu, L., Sun, W., Yang, W., Li, Q. & Shang, J. K. Post-illumination activity of SnO2 nanoparticle-decorated Cu2O nanocubes by H2O2 production in dark from photocatalytic “memory”. Sci. Rep. 6, 20878 (2016).

    Article  CAS  Google Scholar 

  17. Liu, L., Yang, W., Li, Q., Gao, S. & Shang, J. K. Synthesis of Cu2O nanospheres decorated with TiO2 nanoislands, their enhanced photoactivity and stability under visible light illumination, and their post-illumination catalytic memory. ACS Appl. Mater. Interfaces 6, 5629–5639 (2014).

    Article  CAS  Google Scholar 

  18. Chatten, R., Chadwick, A. V., Rougier, A. & Lindan, P. J. D. The oxygen vacancy in crystal phases of WO3. J. Phys. Chem. B 109, 3146–3156 (2005).

    Article  CAS  Google Scholar 

  19. Wang, S., Fan, W., Liu, Z., Yu, A. & Jiang, X. Advances on tungsten oxide based photochromic materials: strategies to improve their photochromic properties. J. Mater. Chem. C. 6, 191–212 (2018).

    Article  CAS  Google Scholar 

  20. Xiong, L.-B., Li, J.-L., Yang, B. & Yu, Y. Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J. Nanomater. 5, 1–14 (2012).

    Article  Google Scholar 

  21. Lira, E. et al. The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J. Am. Chem. Soc. 133, 6529–6532 (2011).

    Article  CAS  Google Scholar 

  22. Zhang, Q., Wang, H., Li, Z., Geng, C. & Leng, J. Metal-free photocatalyst with visible-light-driven post-illumination catalytic memory. ACS Appl. Mater. Interfaces 9, 21738–21746 (2017).

    Article  CAS  Google Scholar 

  23. Xu, Y. et al. Atomic-scale marriage of light-harvesting and charge-storing components for efficient photoenergy storage catalysis. Nano Energy 28, 407–416 (2016).

    Article  CAS  Google Scholar 

  24. Li, J. et al. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability. Sci. Rep. 3, 2409 (2013).

    Article  Google Scholar 

  25. Ling, T. et al. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 4, eaau6261 (2018).

    Article  CAS  Google Scholar 

  26. Kim, H. S. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat. Mater. 16, 454–462 (2017).

    Article  CAS  Google Scholar 

  27. Yan, L. et al. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2. ChemSusChem 12, 3571–3581 (2019).

    Article  CAS  Google Scholar 

  28. Lee, J., Sorescu, D. C. & Deng, X. Electron-induced dissociation of CO2 on TiO2(110). J. Am. Chem. Soc. 133, 10066–10069 (2011).

    Article  CAS  Google Scholar 

  29. Wang, L., Ha, M. N., Liu, Z. & Zhao, Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J. Mater. Chem. A 4, 5314–5322 (2016).

    Article  CAS  Google Scholar 

  30. Yu, X. et al. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 8, 1702930 (2018).

    Article  Google Scholar 

  31. Cong, S., Tian, Y., Li, Q., Zhao, Z. & Geng, F. Single‐crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26, 4260–4267 (2014).

    Article  CAS  Google Scholar 

  32. Sun, S., Watanabe, M., Wu, J., An, Q. & Ishihara, T. Ultrathin WO3·0.33H2O nanotubes for CO2 photoreduction to acetate with high selectivity. J. Am. Chem. Soc. 140, 6474–6482 (2018).

    Article  CAS  Google Scholar 

  33. Sun, S., Watanabe, M., Wu, J., An, Q. & Ishihara, T. Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem. Int. Ed. 51, 2395–2399 (2012).

    Article  Google Scholar 

  34. Voiry, D., Shin, H. S., Loh, K. P. & Chhowalla, M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 0105 (2018).

    Article  CAS  Google Scholar 

  35. Tu, W. et al. Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain. Chem. Eng. 5, 7260–7268 (2017).

    Article  CAS  Google Scholar 

  36. Safaei, J. et al. Graphitic carbon nitride (g-C3N4) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. J. Mater. Chem. A. 6, 22346–22380 (2018).

    Article  CAS  Google Scholar 

  37. Liang, L. et al. Infrared light-driven CO2 overall splitting at room temperature. Joule 2, 1004–1016 (2018).

    Article  CAS  Google Scholar 

  38. Wang, L., Ha, M. N., Liu, Z. & Zhao, Z. Mesoporous WO3 modified by Mo for enhancing reduction of CO2 to solar fuels under visible light and thermal conditions. Integr. Ferroelectr. 172, 97–108 (2016).

    Article  CAS  Google Scholar 

  39. Li, Q. et al. Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst. J. Mater. Chem. 20, 1068–1072 (2010).

    Article  CAS  Google Scholar 

  40. Han, D. S. et al. Sunlight-charged heterojunction TiO2 and WO3 particle-embedded inorganic membranes for night-time environmental applications. Photochem. Photobiol. Sci. 17, 491–498 (2018).

    Article  CAS  Google Scholar 

  41. Wan, L. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2, 889–898 (2019).

    Article  CAS  Google Scholar 

  42. Jia, J. et al. Visible and near-infrared photothermal catalyzed hydrogenation of gaseous CO2 over nanostructured Pd@Nb2O5. Adv. Sci. 3, 1600189 (2016).

    Article  Google Scholar 

  43. Jing, H. et al. Metallic MoO2-modified graphitic carbon nitride boosting photocatalytic CO2 reduction via Schottky junction. Sol. RRL 8, 1900416 (2019).

    Google Scholar 

  44. Li, J. et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion: via localized surface plasmon resonance of MoO3−x. J. Mater. Chem. A 7, 2821–2830 (2019).

    Article  CAS  Google Scholar 

  45. Vickers, S. M., Gholami, R., Smith, K. J. & MacLachlan, M. J. Mesoporous Mn- and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation. ACS Appl. Mater. Interfaces 7, 11460–11466 (2015).

    Article  CAS  Google Scholar 

  46. Jampaiah, D., Venkataswamy, P., Coyle, V. E., Reddy, B. M. & Bhargava, S. K. Low-temperature CO oxidation over manganese, cobalt, and nickel doped CeO2 nanorods. RSC Adv. 6, 80541–80548 (2016).

    Article  CAS  Google Scholar 

  47. Watanabe, K., Menzel, D., Nilius, N. & Freund, H. J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    Article  CAS  Google Scholar 

  48. Chu, W., Zheng, Q., Prezhdo, O. V. & Zhao, J. CO2 photoreduction on metal oxide surface is driven by transient capture of hot electrons: ab initio quantum dynamics simulation. J. Am. Chem. Soc. 142, 3214–3221 (2020).

    Article  CAS  Google Scholar 

  49. Watson, A. M. et al. Rhodium nanoparticles for ultraviolet plasmonics. Nano Lett. 15, 1095–1100 (2015).

    Article  CAS  Google Scholar 

  50. Yu, S. & Jain, P. K. Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nat. Commun. 10, 2022 (2019).

    Article  Google Scholar 

  51. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  CAS  Google Scholar 

  52. Ghuman, K. K. et al. Photoexcited surface frustrated Lewis pairs for heterogeneous photocatalytic CO2 reduction. J. Am. Chem. Soc. 138, 1206–1214 (2016).

    Article  CAS  Google Scholar 

  53. Ghuman, K. K. et al. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3−x(OH)y. Phys. Chem. Chem. Phys. 17, 14623–14635 (2015).

    Article  CAS  Google Scholar 

  54. Hoch, L. B. et al. Carrier dynamics and the role of surface defects: designing a photocatalyst for gas-phase CO2 reduction. Proc. Natl Acad. Sci. USA 50, 1609374113 (2016).

    Google Scholar 

  55. Loh, J. Y. Y., Mohan, A., Flood, A. G., Ozin, G. A. & Kherani, N. P. Waveguide photoreactor enhances solar fuels photon utilization towards maximal optoelectronic–photocatalytic synergy. Nat. Commun. 12, 402 (2021).

    Article  CAS  Google Scholar 

  56. Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article  CAS  Google Scholar 

  57. Chen, S. et al. Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J. Mater. Chem. A 8, 2286–2322 (2020).

    Article  CAS  Google Scholar 

  58. Tatsuma, T., Saitoh, S., Ohko, Y. & Fujishima, A. TiO2–WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater. 13, 2838–2842 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Connaught Foundation, NSERC and University of Toronto for their support.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.Y.L. conceptualized and prepared the manuscript. G.A.O. and N.P.K. edited the manuscript and are principal investigators.

Corresponding authors

Correspondence to Nazir P. Kherani or Geoffrey A. Ozin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Ding Ma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loh, J.Y.Y., Kherani, N.P. & Ozin, G.A. Persistent CO2 photocatalysis for solar fuels in the dark. Nat Sustain 4, 466–473 (2021). https://doi.org/10.1038/s41893-021-00681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-021-00681-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing