Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proton–electron mass ratio by high-resolution optical spectroscopy of ion ensembles in the resolved-carrier regime

Abstract

Optical spectroscopy in the gas phase is a key tool for elucidating the structure of atoms and molecules and their interaction with external fields. The line resolution is usually limited by a combination of first-order Doppler broadening due to particle thermal motion and a short transit time through the excitation beam. For trapped particles, suitable laser cooling techniques can lead to strong confinement (the Lamb–Dicke regime) and thus to optical spectroscopy free of these effects. For non-laser-coolable spectroscopy ions, this has so far only been achieved when trapping one or two atomic ions, together with a single laser-coolable atomic ion1,2. Here we show that one-photon optical spectroscopy free of Doppler and transit broadening can also be obtained with more easily prepared ensembles of ions, if performed with mid-infrared radiation. We demonstrate the method on molecular ions. We trap ~100 molecular hydrogen ions (HD+) within a Coulomb cluster of a few thousand laser-cooled atomic ions and perform laser spectroscopy of the fundamental vibrational transition. Transition frequencies were determined with a lowest uncertainty of 3.3 × 10−12 fractionally. As an application, we determine the proton–electron mass ratio by matching a precise ab initio calculation with the measured vibrational frequency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the key elements of the apparatus.
Fig. 2: Spectral properties of the mid-infrared laser source.
Fig. 3: Two hyperfine components of the fundamental rovibrational transition of HD+, at a frequency of 58.6 THz.
Fig. 4: Determinations of the ratio of reduced nuclear mass to electron mass \(\mu /{m}_{{\rm{e}}}={m}_{{\rm{e}}}^{-1}{m}_{{\rm{p}}}{m}_{{\rm{d}}}/({m}_{{\rm{p}}}+{m}_{{\rm{d}}})\simeq 1,223.9\).

Similar content being viewed by others

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Rosenband, T. et al. Observation of the 1S0 → 3P0 clock transition in 27Al+. Phys. Rev. Lett. 98, 220801 (2007).

    Article  ADS  Google Scholar 

  2. Chou, C. W., Hume, D. B., Thorpe, M. J., Wineland, D. J. & Rosenband, T. Quantum coherence between two atoms beyond Q = 1015. Phys. Rev. Lett. 106, 160801 (2011).

    Article  ADS  Google Scholar 

  3. Dicke, R. H. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472–473 (1953).

    Article  ADS  Google Scholar 

  4. Major, F. G. & Werth, G. High-resolution magnetic hyperfine resonance in harmonically bound ground-state 199Hg ions. Phys. Rev. Lett. 30, 1155–1158 (1973).

    Article  ADS  Google Scholar 

  5. Rosenband, T. et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  6. Derevianko, A. & Katori, H. Colloquium: Physics of optical lattice clocks. Rev. Mod. Phys. 83, 331–347 (2011).

    Article  ADS  Google Scholar 

  7. Poli, N., Oates, C. W., Gill, P. & Tino, G. M. Optical atomic clocks. Riv. Nuovo Cim. 36, 555–624 (2013).

    ADS  Google Scholar 

  8. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  9. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989).

    Article  ADS  Google Scholar 

  10. Lechner, R. et al. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016).

    Article  ADS  Google Scholar 

  11. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article  ADS  Google Scholar 

  12. Alighanbari, S., Hansen, M. G., Korobov, V. I. & Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 14, 555–559 (2018).

    Article  Google Scholar 

  13. Alighanbari, S., Giri, G. S., Constantin, F. L., Korobov, V. I. & Schiller, S. Precise test of quantum electrodynamics and determination of fundamental constants with HD+ ions. Nature 581, 152–158 (2020).

    Article  ADS  Google Scholar 

  14. Chou, C. W. et al. Frequency-comb spectroscopy on pure quantum states of a single molecular ion. Science 367, 1458–1461 (2020).

    Article  ADS  Google Scholar 

  15. Kondov, S. S. et al. Molecular lattice clock with long vibrational coherence. Nat. Phys. 15, 1118–1122 (2019).

    Article  Google Scholar 

  16. Patra, S. et al. Proton–electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 369, 1238–1241 (2020).

    Article  ADS  Google Scholar 

  17. Wolf, F. et al. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 530, 457–460 (2016).

    Article  ADS  Google Scholar 

  18. Zhang, C. Production and Sympathetic Cooling of Complex Molecular Ions. PhD thesis, Heinrich-Heine-Universität Düsseldorf (2008).

  19. Lakkaraju, H. S. & Schuessler, H. A. Motional side-band resonances in the microwave spectrum of stored ions. J. Appl. Phys. 53, 3967–3974 (1982).

    Article  ADS  Google Scholar 

  20. Cutler, L. S., Giffard, R. P. & McGuire, M. D. Thermalization of 199Hg ion macromotion by a light background gas in an RF quadrupole trap. Appl. Phys. B 36, 137–142 (1985).

    Article  ADS  Google Scholar 

  21. Prestage, J. D., Tjoelker, R. L., Dick, G. J. & Maleki, L. Ultrastable Hg+. J. Mod. Opt. 39, 221–232 (1992).

    Article  ADS  Google Scholar 

  22. Fisk, P. T. H., Sellars, M. J., Lawn, M. A. & Coles, C. Accurate measurement of the 12.6-GHz ‘clock’ transition in trapped Yb+ ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344–354 (1997).

    Article  Google Scholar 

  23. Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. Values of Fundamental Physical Constants (2019); https://physics.nist.gov/cuu/Constants/index.html

  24. Köhler, F. et al. The electron mass from g-factor measurements on hydrogen-like carbon 12C5+. J. Phys. B 48, 144032 (2015).

    Article  ADS  Google Scholar 

  25. Heiße, F. et al. High-precision mass spectrometer for light ions. Phys. Rev. A 100, 022518 (2019).

    Article  ADS  Google Scholar 

  26. Rau, S. et al. Penning trap mass measurements of the deuteron and the HD+ molecular ion. Nature 585, 43–47 (2020).

    Article  ADS  Google Scholar 

  27. Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 506, 467–470 (2014).

    Article  ADS  Google Scholar 

  28. Fink, D. J. & Myers, E. G. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of \({\mathrm{H}}_{2}^{+}\) to D+ with \({\mathrm{H}}_{2}^{+}\) in a resolved vibrational state. Phys. Rev. Lett. 124, 013001 (2020).

    Article  ADS  Google Scholar 

  29. Korobov, V. I., Karr, J.-Ph., Haidar, M. & Zhong, Z.-X. Hyperfine structure in the \({\mathrm{H}}_{2}^{+}\) and HD+ molecular ions at order 6. Phys. Rev. A 102, 022804 (2020).

    Article  ADS  Google Scholar 

  30. Bressel, U. et al. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 108, 183003 (2012).

    Article  ADS  Google Scholar 

  31. Biesheuvel, J. et al. High-precision spectroscopy of the HD+ molecule at the 1-p.p.b. level. Appl. Phys. B 123, 23 (2016).

    Article  ADS  Google Scholar 

  32. Schiller, S. & Korobov, V. Test of time-dependence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71, 032505 (2005).

    Article  ADS  Google Scholar 

  33. Germann, M., Tong, X. & Willitsch, S. Observation of dipole-forbidden transitions in sympathetically cooled, state-selected, homonuclear diatomic molecular ions. Nat. Phys. 10, 820–824 (2014).

    Article  Google Scholar 

  34. Schiller, S., Bakalov, D. & Korobov, V. I. Simplest molecules as candidates for precise optical clocks. Phys. Rev. Lett. 113, 023004 (2014).

    Article  ADS  Google Scholar 

  35. Karr, J.-Ph. \({\mathrm{H}}_{2}^{+}\) and HD+: candidates for a molecular clock. J. Mol. Spectrosc. 300, 37–43 (2014).

    Article  ADS  Google Scholar 

  36. Wiens, E., Nevsky, A. Y. & Schiller, S. Resonator with ultrahigh length stability as a probe for equivalence-principle-violating physics. Phys. Rev. Lett. 117, 271102 (2016).

    Article  Google Scholar 

  37. Chen, Q.-F. et al. A compact, robust and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15. Rev. Sci. Instrum. 85, 113107 (2014).

    Article  ADS  Google Scholar 

  38. Bakalov, D., Korobov, V. I. & Schiller, S. High-precision calculation of the hyperfine structure of the HD+ ion. Phys. Rev. Lett. 97, 243001 (2006).

    Article  ADS  Google Scholar 

  39. Korobov, V. I., Hilico, L. & Karr, J.-Ph. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 118, 233001 (2017).

    Article  ADS  Google Scholar 

  40. Aznabayev, D. T., Bekbaev, A. K. & Korobov, V. I. Leading-order relativistic corrections to the rovibrational spectrum of \({\mathrm{H}}_{2}^{+}\) and HD+ molecular ions. Phys. Rev. A 99, 012501 (2019).

    Article  ADS  Google Scholar 

  41. Korobov, V. I., Koelemeij, J. C. J., Hilico, L. & Karr, J.-Ph. Theoretical hyperfine structure of the molecular hydrogen ion at the 1-ppm level. Phys. Rev. Lett. 116, 053003 (2016).

    Article  ADS  Google Scholar 

  42. Bakalov, D., Korobov, V. & Schiller, S. Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy. J. Phys. B 44, 025003 (2011).

    Article  ADS  Google Scholar 

  43. Bakalov, D. & Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 114, 213–230 (2014).

    Article  ADS  Google Scholar 

  44. Schiller, S., Bakalov, D., Bekbaev, A. K. & Korobov, V. I. Static and dynamic polarizability and the Stark and blackbody-radiation frequency shifts of the molecular hydrogen ions \({\mathrm{H}}_{2}^{+}\), HD+ and \({\mathrm{D}}_{2}^{+}\). Phys. Rev. A 89, 052521 (2014).

    Article  ADS  Google Scholar 

  45. Hall, J. L., Bordé, C. J. & Uehara, K. Direct optical resolution of the recoil effect using saturated absorption spectroscopy. Phys. Rev. Lett. 37, 1339–1342 (1976).

    Article  ADS  Google Scholar 

  46. Salomon, C., Bréant, C., Bordé, C. & Barger, R. Ramsey fringes using transitions in the visible and 10-μm spectral regions—experimental methods. J. Phys. Colloq. 42, 3–14 (1981).

    Article  Google Scholar 

  47. Bagayev, S. N., Baklanov, A. E., Chebotayev, V. P. & Dychkov, A. S. Superhigh resolution spectroscopy in methane with cold molecules. Appl. Phys. B 48, 31–35 (1989).

    Article  ADS  Google Scholar 

  48. Cheng, W.-Y., Chen, L., Yoon, T. H., Hall, J. L. & Ye, J. Sub-doppler molecular-iodine transitions near the dissociation limit (523–498 nm). Opt. Lett. 27, 571–573 (2002).

    Article  ADS  Google Scholar 

  49. Bagayev, S. N. et al. Second-order doppler-free spectroscopy. Appl. Phys. B 52, 63–66 (1991).

    Article  ADS  Google Scholar 

  50. Markus, C. R., Kocheril, P. A. & McCall, B. J. Sub-doppler rovibrational spectroscopy of the ν1 fundamental band of D2H+. J. Mol. Spectrosc. 355, 8–13 (2019).

    Article  ADS  Google Scholar 

  51. Mills, A. A. et al. Ultra-sensitive high-precision spectroscopy of a fast molecular ion beam. J. Chem. Phys. 135, 224201 (2011).

    Article  ADS  Google Scholar 

  52. Wing, W. H., Ruff, G. A., Lamb, W. E. & Spezeski, J. J. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36, 1488–1491 (1976).

    Article  ADS  Google Scholar 

  53. Coe, J. V. et al. Sub-doppler direct infrared laser absorption spectroscopy in fast ion beams: the fluorine hyperfine structure of HF+. J. Chem. Phys. 90, 3893–3902 (1989).

    Article  ADS  Google Scholar 

  54. Markus, C. R., Thorwirth, S., Asvany, O. & Schlemmer, S. High-resolution double resonance action spectroscopy in ion traps: vibrational and rotational fingerprints of \({\mathrm{CH}}_2{\mathrm{NH}}_{2}^{+}\). Phys. Chem. Chem. Phys. 21, 26406–26412 (2019).

    Article  Google Scholar 

  55. Roth, B., Koelemeij, J. C. J., Daerr, H. & Schiller, S. Rovibrational spectroscopy of trapped molecular hydrogen ions at millikelvin temperatures. Phys. Rev. A 74, 040501 (2006).

    Article  ADS  Google Scholar 

  56. Koelemeij, J. C. J., Noom, D. W. E., de Jong, D., Haddad, M. A. & Ubachs, W. Observation of the \(v^{\prime} =8\leftarrow v=0\) vibrational overtone in cold trapped HD+. Appl. Phys. B 107, 1075–1085 (2012).

    Article  ADS  Google Scholar 

  57. Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

    Article  ADS  Google Scholar 

  58. Calvin, A. T. et al. Rovibronic spectroscopy of sympathetically cooled 40CaH+. J. Phys. Chem. A 122, 3177–3181 (2018).

    Article  Google Scholar 

  59. Liao, C.-C., Lien, Y.-H., Wu, K.-Y., Lin, Y.-R. & Shy, J.-T. Widely tunable difference frequency generation source for high-precision mid-infrared spectroscopy. Opt. Express 21, 9238–9246 (2013).

    Article  ADS  Google Scholar 

  60. Takahata, K. et al. Absolute frequency measurement of sub-doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb. Phys. Rev. A 80, 032518 (2009).

    Article  ADS  Google Scholar 

  61. Sera, H. et al. Sub-doppler resolution mid-infrared spectroscopy using a difference-frequency-generation source spectrally narrowed by laser linewidth transfer. Opt. Lett. 40, 5467–5470 (2015).

    Article  ADS  Google Scholar 

  62. Hansen, M. G., Magoulakis, E., Chen, Q.-F., Ernsting, I. & Schiller, S. Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1 × 10−13-level frequency instability. Opt. Lett. 40, 2289–2292 (2015).

    Article  ADS  Google Scholar 

  63. Argence, B. et al. Quantum cascade laser frequency stabilization at the sub-Hz level. Nat. Photon. 9, 456–460 (2015).

    Article  ADS  Google Scholar 

  64. Borri, S. et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers. Appl. Phys. B 125, 18 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to E. Wiens for assistance with the frequency comb measurements. We are very grateful to J.-Ph. Karr for communicating the value of \({\mathcal{E}}^{\prime}_1\) before publication. This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 786306, ‘PREMOL’), from the Deutsche Forschungsgemeinschaft (Schi 431/23-1) and from both DFG and the state of Nordrhein-Westfalen via grant no. INST-208/737-1 FUGG. I.V.K. was partly supported by FP7-2013-ITN ‘COMIQ’ (grant no. 607491). V.I.K. acknowledges support from the Russian Foundation for Basic Research under grant no. 19-02-00058-a.

Author information

Authors and Affiliations

Authors

Contributions

I.V.K., M.G.H. and S.S. developed the laser system. I.V.K., S.A. and G.S.G. performed the experiments and analysed the data. I.V.K., S.S. and V.I.K. performed theoretical calculations. S.S. conceived the study, supervised the work and wrote the manuscript. All authors contributed to editing of the manuscript.

Corresponding author

Correspondence to S. Schiller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Table 1.

Supplementary Data SI Fig. 2

Numerical data used to generate the graphs in Fig. 2 of the Supplementary Information.

Supplementary Data SI Fig. 3

Numerical data used to generate the graphs in Fig. 3 of the Supplementary Information.

Source data

Source Data Fig. 2

Numerical data used to generate the graphs in Fig. 2 of the main text.

Source Data Fig. 3

Numerical data used to generate the graphs in Fig. 3 of the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kortunov, I.V., Alighanbari, S., Hansen, M.G. et al. Proton–electron mass ratio by high-resolution optical spectroscopy of ion ensembles in the resolved-carrier regime. Nat. Phys. 17, 569–573 (2021). https://doi.org/10.1038/s41567-020-01150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01150-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing