Skip to main content
Log in

Equivalence between internal observability and exponential stabilization for suspension bridge problem

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We study the fourth order semilinear suspension bridge problem with restoring force h(u) and linear damping \(\delta u_{t}\). Using the multiplier method, we first establish the observability inequality of the corresponding system without damping term. Then we show an equivalence between observability and exponential stabilization of this system by using an appropriate decomposition technique and the semigroup method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, N.U., Harbi, H.: Mathematical analysis of dynamic models of suspension bridges. SIAM J. Appl. Math. 58(3), 853–874 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dridi, H.: Decay rate estimates for a new class of multidimensional nonlinear Bresse systems with time-dependent dissipations, Ric. Mat. (2021), in press, https://doi.org/10.1007/s11587-020-00554-0

  3. Feng, B., Zennir, K., Laouar, L.K.: Decay of an extensible viscoelastic plate equation with a nonlinear time delay. Bull. Malays. Math. Sci. Soc. 42(5), 2265–2285 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferrero, A., Gazzola, F.: A partially hinged rectangular plate as a model for suspension bridges. Discrete Contin. Dyn. Syst. 35(12), 5879–5908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Haraux, A.: Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46(3), 245–258 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Kang, J.-R.: Asymptotic behavior of the thermoelastic suspension bridge equation with linear memory, Bound. Value Probl. Paper No. 206 (2016) 18 pp

  7. Lazer, A.C., McKenna, P.J.: Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 4(3), 243–274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, W., Zhuang, H.: Global existence, asymptotic behavior and blow-up of solutions for a suspension bridge equation with nonlinear damping and source terms. NoDEA Nonlinear Differ. Equ. Appl. 24(6), 35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, W., Zhuang, H.: Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete Contin. Dyn. Syst. Ser. B 26(2), 907–942 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Ma, Q., Wang, B.: Existence of pullback attractors for the coupled suspension bridge equations. Electron. J. Differ. Equ. 2011(16), 10 p (2011)

  11. Ma, Q., Wang, S., Chen, X.: Uniform compact attractors for the coupled suspension bridge equations. Appl. Math. Comput. 217(14), 6604–6615 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Malík, J.: Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems. Appl. Math. 49(1), 1–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Messaoudi, S.A., Bonfoh, A., Mukiawa, S.E., Enyi, C.D.: The global attractor for a suspension bridge with memory and partially hinged boundary conditions. ZAMM Z. Angew. Math. Mech. 97(2), 159–172 (2017)

    Article  MathSciNet  Google Scholar 

  14. Messaoudi, S.A., Mukiawa, S.E.: A suspension bridge problem: Existence and stability, in mathematics across contemporary sciences. Springer Proc. Math. Stat. Springer, Cham 190, 151–165 (2017)

    Article  MATH  Google Scholar 

  15. Messaoudi, S.A., Mukiawa, S.E., Cyril, E.D.: Finite dimensional global attractor for a suspension bridge problem with delay. C. R. Math. Acad. Sci. Paris 354(8), 808–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. McKenna, P.J., Walter, W.: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98(2), 167–177 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. McKenna, P.J., Walter, W.: Travelling waves in a suspension bridge. SIAM J. Appl. Math. 50(3), 703–715 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mukiawa, S.E.: Asymptotic behaviour of a suspension bridge problem. Arab J. Math. Sci. 24(1), 31–42 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  20. Park, S.-H.: Long-time behavior for suspension bridge equations with time delay. Z. Angew. Math. Phys. 69(2), 12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Park, J.-Y., Kang, J.-R.: Global attractors for the suspension bridge equations with nonlinear damping. Quart. Appl. Math. 69(3), 465–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ramos, A.J.A., Souza, M.W.P.: Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation. Z. Angew. Math. Phys. 68(2), 11 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ramos, A.J.A., et al.: Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect. Z. Angew. Math. Phys. 70(3), 14 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Tebou, L.: Equivalence between observability and stabilization for a class of second order semilinear evolution equations, Discrete Contin. Dyn. Syst. (2009), Dynamical systems, differential equations and applications. In: 7th AIMS Conference Supplementary, pp. 744–752

  25. Wang, D., Liu, W.: Lack of exponential decay for a thermoelastic laminated beam under Cattaneo’s law of heat conduction, Ric. Mat. (2020), in press, https://doi.org/10.1007/s11587-020-00527-3

  26. Wang, Y.: Finite time blow-up and global solutions for fourth order damped wave equations. J. Math. Anal. Appl. 418(2), 713–733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X., Yang, L., Ma, Q.: Uniform attractors for non-autonomous suspension bridge-type equations. Bound. Value Probl. 2014, 14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhong, C., Ma, Q., Sun, C.: Existence of strong solutions and global attractors for the suspension bridge equations. Nonlinear Anal. 67(2), 442–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant number 11771216], the Key Research and Development Program of Jiangsu Province (Social Development) [Grant number BE2019725], the Six Talent Peaks Project in Jiangsu Province [Grant number 2015-XCL-020] and the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, W. & Liu, Y. Equivalence between internal observability and exponential stabilization for suspension bridge problem. Ricerche mat 71, 711–721 (2022). https://doi.org/10.1007/s11587-021-00566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00566-4

Keywords

Mathematics Subject Classification

Navigation