Skip to main content
Log in

An innovative contactless finite element simulation of the shot peening process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Shot peening is a major finishing treatment aiming to enhance parts’ life. However, the recourse to simulation to master the process and its effects still suffers from problems due to its complexity. The current paper presents a finite element-based approach that considers the random aspect of the shot peening process in association with a large number of shots, making it more realistic. The developed method is found to allow a computing time gain up to 70 % with comparable results to those obtained by the discrete element method, which has been reported as the most suitable for shot peening simulation. The comparison of both simulations results to experiment returned a good agreement. Simulations and experiences were concerned with C75 Almen-like strips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Ben Moussa N, Gharbi K, Chaieb I, Ben Fredj N (2019) Improvement of AISI 304 austenitic stainless steel low-cycle fatigue life by initial and intermittent deep rolling. Int J Adv Manuf Technol 101:435–449. https://doi.org/10.1007/s00170-018-2955-0

    Article  Google Scholar 

  2. Sidhom N, Ben Moussa N, Janeb S, Braham C, Sidhom H (2014) Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: experimental analysis and numerical simulation. Mater Des 64:503–519. https://doi.org/10.1016/j.matdes.2014.08.002

    Article  Google Scholar 

  3. Peyre P, Fabbro R, Merrien P, Lieurade HP (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113. https://doi.org/10.1016/0921-5093(95)10084-9

    Article  Google Scholar 

  4. Aggarwal ML, Khan RA, Garg RK (2008) When shot-peening does not enhance fatigue life of leaf springs. Int J Surf Sci Eng 2:281–293. https://doi.org/10.1504/IJSURFSE.2008.020499

    Article  Google Scholar 

  5. Al-Hassani STS (1982) The shot peening of metals — mechanics and structures. In: SAE Technical Paper Series

    Google Scholar 

  6. Guechichi H, Castex L (2006) Fatigue limits prediction of surface treated materials. J Mater Process Technol 172:381–387. https://doi.org/10.1016/j.jmatprotec.2005.10.010

    Article  Google Scholar 

  7. Zimmermann M, Klemenz M, Schulze V (2010) Literature review on shot peening simulation. Int J Comput Mater Sci Surf Eng 3:289–310. https://doi.org/10.1504/IJCMSSE.2010.036218

    Article  Google Scholar 

  8. Meguid SA, Shagal G, Stranart JC (1999) Finite element modelling of shot-peening residual stresses. J Mater Process Technol 92–93:401–404. https://doi.org/10.1016/S0924-0136(99)00153-3

    Article  MATH  Google Scholar 

  9. Schiffner K (1999) Droste gen. Helling, C.: Simulation of residual stresses by shot peening. Comput Struct 72:329–340. https://doi.org/10.1016/S0045-7949(99)00012-7

    Article  MATH  Google Scholar 

  10. Guagliano M (2001) Relating Almen intensity to residual stresses induced by shot peening: a numerical approach. J Mater Process Technol 110:277–286. https://doi.org/10.1016/S0924-0136(00)00893-1

    Article  Google Scholar 

  11. Meo M, Vignjevic R (2003) Finite element analysis of residual stress induced by shot peening process. Adv Eng Softw 34:569–575. https://doi.org/10.1016/S0965-9978(03)00063-2

    Article  Google Scholar 

  12. Schwarzer J, Schulze V, Vöhringer O (2003) Evaluation of the influence of shot peening parameters on residual stress profiles using finite element simulation. Mater Sci Forum 426–432:3951–3956. https://doi.org/10.4028/www.scientific.net/MSF.426-432.3951

    Article  Google Scholar 

  13. Majzoobi GH, Azizi R, Alavi Nia A (2005) A three-dimensional simulation of shot peening process using multiple shot impacts. J Mater Process Technol 164–165:1226–1234. https://doi.org/10.1016/j.jmatprotec.2005.02.139

    Article  Google Scholar 

  14. Miao HY, Larose S, Perron C, Lévesque M (2009) On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv Eng Softw 40:1023–1038. https://doi.org/10.1016/j.advengsoft.2009.03.013

    Article  MATH  Google Scholar 

  15. Miao HY, Larose S, Perron C, Lévesque M (2011) Numerical simulation of the stress peen forming process and experimental validation. Adv Eng Softw 42:963–975. https://doi.org/10.1016/j.advengsoft.2011.05.025

    Article  Google Scholar 

  16. Mylonas GI, Labeas G (2011) Numerical modelling of shot peening process and corresponding products: residual stress, surface roughness and cold work prediction. Surf Coat Technol 205:4480–4494. https://doi.org/10.1016/j.surfcoat.2011.03.080

    Article  Google Scholar 

  17. Mylonas GI, Labeas GN (2011) Controlled shot peening simulation for realistic impact pattern characterisation. Int J Surf Sci Eng 5:381. https://doi.org/10.1504/IJSURFSE.2011.044391

    Article  Google Scholar 

  18. Gariépy A, Bridier F, Hoseini M, Bocher P, Perron C, Lévesque M (2013) Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surf Coat Technol 219:15–30. https://doi.org/10.1016/j.surfcoat.2012.12.046

    Article  Google Scholar 

  19. Xiao X, Tong X, Gao G, Zhao R, Liu Y, Li Y (2018) Estimation of peening effects of random and regular peening patterns. J Mater Process Technol 254:13–24. https://doi.org/10.1016/j.jmatprotec.2017.11.018

    Article  Google Scholar 

  20. Ciampini D, Spelt JK, Papini M (2003) Simulation of interference effects in particle streams following impact with a flat surface Part I. Theory and analysis. Wear 254:237–249. https://doi.org/10.1016/S0043-1648(03)00017-6

    Article  Google Scholar 

  21. Ciampini D, Spelt JK, Papini M (2003) Simulation of interference effects in particle streams following impact with a flat surface. Wear. 254:250–264. https://doi.org/10.1016/S0043-1648(03)00016-4

    Article  Google Scholar 

  22. Han K, Peric D, Crook AJL, Owen DRJ (2000) A combined finite/discrete element simulation of shot peening processes – Part I: studies on 2D interaction laws. Eng Comput 17:593–620. https://doi.org/10.1108/02644400010339798

    Article  MATH  Google Scholar 

  23. Han K, Peric’ D, Owen DRJ, Yu J (2000) A combined finite/discrete element simulation of shot peening processes – Part II: 3D interaction laws. Eng Comput 17:680–702. https://doi.org/10.1108/02644400010340615

    Article  MATH  Google Scholar 

  24. Hong T, Ooi JY, Shaw B (2008) A numerical simulation to relate the shot peening parameters to the induced residual stresses. Eng Fail Anal 15:1097–1110. https://doi.org/10.1016/j.engfailanal.2007.11.017

    Article  Google Scholar 

  25. Bhuvaraghan B, Srinivasan SM, Maffeo B (2011) Numerical simulation of Almen strip response due to random impacts with strain-rate effects. Int J Mech Sci 53:417–424. https://doi.org/10.1016/j.ijmecsci.2011.03.004

    Article  Google Scholar 

  26. Murugaratnam K, Utili S, Petrinic N (2015) A combined DEM-FEM numerical method for Shot Peening parameter optimisation. Adv Eng Softw 79:13–26. https://doi.org/10.1016/j.advengsoft.2014.09.001

    Article  Google Scholar 

  27. Tu F, Delbergue D, Miao H, Klotz T, Brochu M, Bocher P, Levesque M (2017) A sequential DEM-FEM coupling method for shot peening simulation. Surf Coat Technol 319:200–212. https://doi.org/10.1016/j.surfcoat.2017.03.035

    Article  Google Scholar 

  28. Jianming W, Feihong L, Feng Y, Gang Z (2011) Shot peening simulation based on SPH method. Int J Adv Manuf Technol 56:571–578. https://doi.org/10.1007/s00170-011-3193-x

    Article  MATH  Google Scholar 

  29. Moore MG, Evans WP (1958) Mathematical correction for stress in removed layers in X-ray diffraction residual stress analysis. SAE Trans 66:340–345. https://doi.org/10.4271/580035

    Article  Google Scholar 

  30. Hornbach DJ, Prevéy PS, Mason PW (1995) X-ray diffraction characterization of the residual stress and hardness distributions in induction hardened gears. Proc. First Int. Conf. Induction Hardened Gears Crit. Components, Indianapolis, IN, May 15-17, 1995, Gear Res. Inst. 69–76

  31. Nakamoto H, Gen K, Takashima I, Yokomaku T, Tanaka K (2017) Finite element correction for residual stress distribution measured by x-ray surface removal method. J Soc Mater Sci Jpn 66:515–521. https://doi.org/10.2472/jsms.66.515

    Article  Google Scholar 

  32. Johnson GR, Cook WH, Gordon R, Johnson, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, pp 541–547

  33. Abaqus Documentation (2015) Dassault Systèmes, Providence, RI, USA

  34. Hertz H (1881) On the contact of elastic solids. J für die reine und Angew Math 92:156–171

    MATH  Google Scholar 

  35. Kim T, Lee JH, Lee H, Cheong, Kyun S (2010) An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Mater Des 31:50–59. https://doi.org/10.1016/j.matdes.2009.07.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iheb Chaieb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaieb, I., Ben Moussa, N., Ben Fredj, N. et al. An innovative contactless finite element simulation of the shot peening process. Int J Adv Manuf Technol 113, 2121–2136 (2021). https://doi.org/10.1007/s00170-021-06809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06809-w

Keywords

Navigation