Skip to main content
Log in

Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, outcomes of the study on the Bäcklund transformation, Lax pair, and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics, fluid mechanics, and plasma physics are presented. Via the Hirota bilinear method, a bilinear Bäcklund transformation is obtained, based on which a Lax pair is constructed. Via the symbolic computation, mixed rogue–solitary and rogue–periodic wave solutions are derived. Interactions between the rogue waves and solitary waves, and interactions between the rogue waves and periodic waves, are studied. It is found that (1) the one rogue wave appears between the two solitary waves and then merges with the two solitary waves; (2) the interaction between the one rogue wave and one periodic wave is periodic; and (3) the periodic lump waves with the amplitudes invariant are depicted. Furthermore, effects of the noise perturbations on the obtained solutions will be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Under the transformation, \(t=-T\), \(x=X\), \(y=X\), \(z=X\) and \(-u_x=U\), Eq. (1) has been reduced to the KdV equation,

    $$\begin{aligned} U_{T}+U_{XXX}-6U{U_{X}}=0, \end{aligned}$$

    for the acoustic waves in an anharmonic crystal, hydromagnetic waves in a cold plasma or shallow-water waves, where U(XY) denotes the wave height, X and T are the independent variables [45, 46].

References

  1. Brenner, M.P., Eldredge, J.D., Freund, J.B.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4, 100501 (2019)

    Article  Google Scholar 

  2. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painleve analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics. Chaos Solitons Fract. 144, 110559 (2021)

    Article  MathSciNet  Google Scholar 

  3. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic studies via a variable-coefficient nonlinear dispersive-wave system in the Solar System. Chaos Solitons Fract. 142, 110367 (2021)

  4. Chen, J.H., Shen, X.Q., Tang, S.J., Cao, Q.T., Gong, Q.H., Xiao, Y.F.: Microcavity nonlinear optics with an organically functionalized surface. Phys. Rev. Lett. 123, 173902 (2019)

    Article  Google Scholar 

  5. Zhang, C.Y., Gao, Y.T., Li, L.Q., Ding, C.C.: The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in fluid mechanics. Nonlinear Dyn. 102, 1773–1786 (2020)

    Article  Google Scholar 

  6. Wu, H.Y., Jiang, L.H.: Bright-type and dark-type vector solitons of the (2+1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose–Einstein condensate. Eur. Phys. J. Plus 133, 124 (2018)

    Article  Google Scholar 

  7. Turkyilmazoglu, M.: Fluid flow and heat transfer over a rotating and vertically moving disk. Phys. Fluids 30, 063605 (2018)

    Article  Google Scholar 

  8. Jhangeera, A., Munawarb, M., Riazc, M.B., Baleanu, D.: Construction of traveling waves patterns of (1+\(n\))-dimensional modified Zakharov–Kuznetsov equation in plasma physics. Results Phys. 19, 103330 (2020)

    Article  Google Scholar 

  9. Liu, H.P., Animasaun, I.L., Shah, N.A., Koriko, O.K., Mahanthesh, B.: Further Discussion on the Significance of Quartic Autocatalysis on the Dynamics of Water Conveying 47 nm Alumina and 29 nm Cupric Nanoparticles. Arab. J. Sci. Eng. 45, 5977–6004 (2020)

    Article  Google Scholar 

  10. Makinde, O.D., Animasaunb, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)

    Article  Google Scholar 

  11. Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)

    Article  Google Scholar 

  12. Ye, Y.L., Liu, J., Bu, L.L., Pan, C.C., Chen, S.H., Mihalache, D.: Rogue waves and modulation instability in an extended Manakov system. Nonlinear Dyn. 102, 1801–1812 (2020)

    Article  Google Scholar 

  13. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 042210 (2019)

    Article  MathSciNet  Google Scholar 

  14. Meng, G.Q.: High-order semi-rational solutions for the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Appl. Math. Lett. 105, 106343 (2020)

  15. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn. 99, 1039–1052 (2020)

    Article  Google Scholar 

  16. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  18. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2 + 1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 100, 2729–2738 (2020)

    Article  Google Scholar 

  19. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 140, 110085 (2020)

  20. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (2+1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hayatdavoodia, M., Seifferta, B., Erte, R.C.: Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders. Coas. Eng. 88, 210–228 (2014)

    Article  Google Scholar 

  22. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Article  Google Scholar 

  23. Chen, G.L., Lee, K.J., Magnusson, R.: Periodic photonic filters: theory and experiment. Opt. Eng. 55, 037108 (2016)

    Article  Google Scholar 

  24. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow water in an open sea or a wide channel: Auto- and non-Auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos Solitons Fract. 138, 109950 (2020)

    Article  Google Scholar 

  25. Gao, X.Y., Guo, Y.J., Shan, W.R., Yuan, Y.Q., Zhang, C.R., Chen, S.S.: Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and \(N\) solitons for a generalized (3 + 1)-dimensional variable-coefficient modified Kadomtsev–Petviashvili system. Appl. Math. Lett. 111, 106627 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu, J.: Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov-Ivanov derivative nonlinear Schrödinger equation. Nonlinear Dyn. 96, 789–800 (2019)

    Article  MATH  Google Scholar 

  27. Wang, Y.X., Gao, B.: The dynamic behaviors between multi-soliton of the generalized (3+1)-dimensional variable coefficients Kadomtsev–Petviashvili equation. Nonlinear Dyn. 101, 2463–2470 (2020)

    Article  Google Scholar 

  28. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020)

  29. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    Article  MATH  Google Scholar 

  30. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 133, 109580 (2020)

    Article  Google Scholar 

  32. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98, 269–282 (2019)

    Article  MATH  Google Scholar 

  33. Jia, T.T., Gao, Y.T., Yu, X., Li, L.Q.: Lax pairs, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. Appl. Math. Lett. 114, 106702 (2021)

  34. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  35. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    Article  MathSciNet  Google Scholar 

  36. Turkyilmazoglu, M.: An effective approach for approximate analytical solutions of the damped Duffing equation. Phys. Scr. 86, 015301 (2012)

    Article  MATH  Google Scholar 

  37. Turkyilmazoglu, M.: The Airy equation and its alternative analytic solution. Phys. Scr. 86, 055004 (2012)

    Article  MATH  Google Scholar 

  38. Turkyilmazoglu, M.: Effective computation of exact and analytic approximate solutions to singular nonlinear equations of Lane–Emden–Fowler type. Appl. Math. Model. 37, 7539–7548 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hofstrand, A., Jakobsen, P., Moloney, J.V.: Bidirectional shooting method for extreme nonlinear optics. Phys. Rev. A 100, 053818 (2019)

    Article  Google Scholar 

  40. Simos, T.E.: A Runge–Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution. Comput. Math. Appl. 25, 95–101 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  42. Farhan, M., Omar, Z., Mebarek-Oudina, F., Raza, J., Shah, Z., Choudhari, R.V., Makinde, O.D.: Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator. Comput. Math. Model. 31, 116–132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hishem, A.T., Hassen, N.M., Farhan, E.M.: VHDL Implementation of Hybrid Block Cipher method (SRC). Eng. Technol. J. 28, 953–963 (2010)

    Google Scholar 

  44. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  46. Dong, M.J., Tian, S.F., Yan, X.W., Zhou, L.: Solitary waves, homoclinic breather waves and rogue waves of the (3 + 1)-dimensional Hirota bilinear equation. Comput. Math. Appl. 75, 957–964 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized (2 + 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Lett. 74, 184–198 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, Z.L., He, L.C.: \(M\)-lump, high-order breather solutions and interaction dynamics of a generalized (2 + 1)-dimensional nonlinear wave equation. Nonlinear Dyn. 100, 2753–2765 (2020)

    Article  Google Scholar 

  50. Zhang, C.Y., Gao, Y.T., Yu, X., Li, L.Q., Wang, D.: Lump, lumpoff and rogue wave solutions for a generalized (2 + 1)-dimensional nonlinear wave equation in fluid mechanics/nonlinear optics/plasma physics, in preparation (2020)

  51. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  52. Liu, J.G., You, M.X., Zhou, L., Ai, G.P.: The solitary wave, rogue wave and periodic solutions for the (3 + 1)-dimensional soliton equation. Z. Angew. Math. Phys. 70, 4 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yin, H.M., Tian, B., Zhao, X.C., Zhang, C.R., Hu, C.C.: Breather-like solitons, rogue waves, quasi-periodic/chaotic states for the surface elevation of water waves. Nonlinear Dyn. 97, 21–31 (2019)

    Article  MATH  Google Scholar 

  54. Liu, S.H., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Du, X.X., Chen, S.S.: Breather, lump, shock and travelling-wave solutions for a (3 + 1)-dimensional generalized Kadomtsev–Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. (2021) in press. https://doi.org/10.1080/00207160.2020.1805107

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11805020, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhao or Bo Tian.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Tian, B., Tian, HY. et al. Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2 + 1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics. Nonlinear Dyn 103, 1785–1794 (2021). https://doi.org/10.1007/s11071-020-06154-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06154-9

Keywords

Navigation