Skip to main content
Log in

Quantum and Classical Thermal Correlations in Spin-1 Heisenberg Chain with Alternating Single-Ion Anisotropy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the present paper, we study the quantum phase transition in a spin-1 Heisenberg model with two and three particles by using pairwise classical and quantum thermal correlations and entanglement measures, that is, the generalized concurrence and the negativity at finite temperatures. We have used thermodynamic functions of particle number and particle susceptibility to characterize the thermodynamical behavior. The pairwise correlations are derived based on a necessary and sufficient condition for the zero-discord state. We obtain analytical results for the coherence-vector representation of a bipartite state. Using the exact diagonalization technique, we demonstrate that the quantum critical points, detected by the particle number and the particle susceptibility, are ultimately in close correspondence to that of thermal pairwise correlations and entanglement measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  2. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  3. X. Wang, Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  4. X. Wang, Phys. Lett. A 281, 101 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.L. Kamta, A.F. Starace, Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  6. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Asoudeh, V. Karimipour, Phys. Rev. A 70, 052307 (2004)

    Article  ADS  Google Scholar 

  8. M. Asoudeh, V. Karimipour, Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  9. N. Canosa, R. Rossignoli, Phys. Rev. A 69, 052306 (2004)

    Article  ADS  Google Scholar 

  10. G. Najarbashi, L. Balazadeh, A. Tavana, Int. J. Theor. Phys. 57, 95 (2018)

    Article  Google Scholar 

  11. L. Balazadeh, G. Najarbashi, A. Tavana, Sci. Rep. 8, 17789 (2018)

    Article  ADS  Google Scholar 

  12. K.M. O’Connor, W.K. Wootters, Phys. Rev. A 63, 0520302 (2001)

    Article  Google Scholar 

  13. D. A. Meyer, N. R. Wallach, quant-ph/0108104

  14. T. J. Osborne, M. A. Nielsen, quant-ph/ 0202162

  15. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  16. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  17. H. Olivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  18. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  19. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  22. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  23. T. Werlang, G.A.P. Ribeiro, G. Rigolin, Int. J. Modern Phys. B 27(1–3), 1345032 (2013)

    Article  ADS  Google Scholar 

  24. M.S. Sarandy, T.R.D. Oliveira, Int. J. Modern Phys. B 27(1—-3), 1345030 (2013)

    Article  ADS  Google Scholar 

  25. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Ren, G.H. Liu, W.L. You, J. Phys. Condens. Matter 27, 105602 (2015)

    Article  ADS  Google Scholar 

  27. J. Chakhalian, J.W. Freeland, A.J. Millis, C. Panagopoulos, J.M. Rondinelli, Rev. Modern Phys. 86, 1189 (2014)

    Article  ADS  Google Scholar 

  28. Y.C. Tzeng, M.F. Yang, Phys. Rev. A 77, 012311 (2008)

    Article  ADS  Google Scholar 

  29. T. Zhou, J. Cui, G.L. Long, Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  30. A. Uhlmann, Phys. Rev. A 62, 032307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Audenaert, F. Verstraete, D. Moor, Phys. Rev. A 64, 052304 (2001)

    Article  ADS  Google Scholar 

  33. S. Albeverio, S.M. Fei, J. Opt. B Quantum Semiclass. Opt. 3, 1 (2001)

    Article  Google Scholar 

  34. H. Fan, K. Matsumoto, H. Imai, J. Phys. A Math. Gen. 36, 4151 (2003)

    Article  ADS  Google Scholar 

  35. P. Badziag, P. Deuar, M. Horodecki, P. Horodecki, R. Horodecki, quant-ph/0107147 (2001)

  36. Y.Q. Li, G.Q. Zhu, Front. Phys. China 3(3), 250–257 (2008)

    Article  ADS  Google Scholar 

  37. S.J. Akhtarshenas, J. Phys. A Math. Gen. 38, 6777–6784 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Peres, Phys. Rev. Lett. 76, 1413–1416 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  39. G. Vidal, R.F. Werner, Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  40. T. Laustsen, F. Verstraete, S.J. van Enk, Quantum Inf. Comput. 3, 64 (2003)

    MathSciNet  Google Scholar 

  41. V.S. Abgaryan, N.S. Ananikian, L.N. Ananikyan, A.N. Kocharian, Phys. Scr. 83, 055702 (2011)

    Article  ADS  Google Scholar 

  42. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  43. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  44. W.K. Wootters, Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  Google Scholar 

  45. X.-H. Gao, A. Sergio, K. Chen, S.-M. Fei, X.-Q. Li-Jost, Front. Coumput. Sci. China 2(2), 114–128 (2008)

    Article  Google Scholar 

  46. K. Chen, S. Albeverio, S.-M. Fei, Phys. Rev. Lett. 95, 210501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  47. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najarbashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, H., Najarbashi, G., Tarighi, B. et al. Quantum and Classical Thermal Correlations in Spin-1 Heisenberg Chain with Alternating Single-Ion Anisotropy. J Low Temp Phys 202, 290–309 (2021). https://doi.org/10.1007/s10909-020-02556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02556-6

Keywords

Navigation