Skip to main content
Log in

Lubrication characteristics of cycloid pin wheel transmission of RV reducer

RV 减速器摆线针轮传动机构的润滑特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to analyze the lubricating characteristics at different meshing points in the cycloid pin wheel transmission process, the cycloid gear teeth were discretized, combined with the kinematic analysis of the cycloid pin gear transmission and the contact analysis of the gear teeth. The progressive mesh densification method (PMD) was used to numerically solve the film thickness. The influence of the design parameters and process parameters on the lubrication characteristics was analyzed. The elastohydrodynamic lubrication and mixed lubrication characteristics at different contact points were obtained. The optimal meshing area of the cycloid gear tooth was determined, and the film thickness ratio, contact load ratio, maximum contact pressure at different points, average film thickness and roughness after contact deformation were analyzed. The conclusion of this study provides effective guidance for the research on the modification of cycloid gear teeth.

摘要

将摆线针轮齿齿廓进行离散, 结合摆线针轮传动机构运动学分析和轮齿接触分析的结果, 应用网格渐进加密法 (PMD) 对摆线针轮传动过程中不同啮合点的润滑特性进行了研究. 分析了设计参数和工艺参数对润滑特性的影响, 获得了在不同接触点的弹流润滑特性和混合润滑特性, 对比了各啮合点处的膜厚比、 接触载荷比、 最大接触压力、 接触变形后的平均膜厚和粗糙度等, 确定了摆线轮齿的最佳啮合区域. 该研究为摆线齿轮齿的修形研究提供了有效的指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Hui, SHI Zhao-yao, YU Bo, XU Hang. Transmission performance analysis of RV reducers influenced by profile modification and load [J]. Applied Sciences, 2019, 9(19): 4099. DOI: https://doi.org/10.3390/app9194099.

    Article  Google Scholar 

  2. SHI Xiu-jiang, SUN Wen, LU Xi-qun, MA Xuan, ZHU Dong, ZHAO Bin, HE Tao. Three-dimensional mixed lubrication analysis of spur gears with machined roughness [J]. Tribology International, 2019, 140: 105864. DOI: https://doi.org/10.1016/j.triboint.2019.105864.

    Article  Google Scholar 

  3. ZHAO Qing, HE Shao-jun. Analysis of EHL in cycloid planetary gearing [J]. Lubrication Engineering, 1997, 22(6): 19–21.(in Chinese)

    Google Scholar 

  4. JIANG Yuan-zhi, WANG You-qiang, YU Ping. The transient EHL analysis of the cycloidal pinwheel planetary gearing mechanism [J]. Lubrication Engineering, 2014, 39(12): 12–15, 23. (in Chinese)

    Google Scholar 

  5. JIANG Yuan-zhi, WANG You-qiang, LU Xian-jiu. The influence of single rough peak on the elastohydrodynamic lubrication of cycloid pinwheel [J]. Machinery Design & Manufacture, 2014(12): 49–52. (in Chinese)

  6. WEI Bo, WANG Jia-xu, ZHOU Guang-wu, YANG Rong-song, ZHOU Hong-jun, HE Tao. Mixed lubrication analysis of modified cycloidal gear used in the RV reducer [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230(2): 121–134. DOI: https://doi.org/10.1177/1350650115593301.

    Article  Google Scholar 

  7. SUN Zhang-dong, ZHU Cai-chao, LIU Huai-ju, SONG Chao-sheng, GU Zong-lin. Study on starved lubrication performance of a cycloid drive [J]. Tribology Transactions, 2016, 59(6): 1005–1015. DOI: https://doi.org/10.1080/10402004.2015.1129569.

    Article  Google Scholar 

  8. ZHU Cai-chao, SUN Zhang-dong, LIU Huai-ju, SONG Chao-sheng, GU Zong-lin. Effect of tooth profile modification on lubrication performance of a cycloid drive [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229(7): 785–794. DOI: https://doi.org/10.1177/1350650115570402.

    Article  Google Scholar 

  9. ZHU Dong, AI Xiao-lan. Point contact EHL based on optically measured three-dimensional rough surfaces [J]. Journal of Tribology, 1997, 119(3): 375–384. DOI: https://doi.org/10.1115/1.2833498.

    Article  Google Scholar 

  10. ZHU Dong, HU Yuan-zhong. The study of transition fromelastohydrodynamic to mixed and boundary lubrication [C]// Proceedings of the 1999 STLE/ASME Tribology Surveillance, Park Ridge: STLE/ASME, 1999: 150–156. https://www.researchgate.net/publication/283921871_The_study_of_transition_from_full_film_elastohydrodynamic_to_mixed_and_boundary_lubrication.

    Google Scholar 

  11. HU Yuan-zhong, ZHU Dong. A full numerical solution to the mixed lubrication in point contacts [J]. Journal of Tribology, 2000, 122(1): 1–9. DOI: https://doi.org/10.1115/1.555322.

    Article  Google Scholar 

  12. LIU Yu-chuan, WANG Q J, WANG Wen-zhong, HU Yuan-zhong, ZHU Dong. Effects of differential scheme and mesh density on EHL film thickness in point contacts [J]. Journal of Tribology, 2006, 128(3): 641–653. DOI: https://doi.org/10.1115/1.2194916.

    Article  Google Scholar 

  13. WANG Wen-zhong, HU Yuan-zhong, LIU Yu-chuan, WANG Hui. Deterministic solutions and thermal analysis for mixed lubrication in point contacts [J]. Tribology International, 2007, 40(4): 687–693. DOI: https://doi.org/10.1016/j.triboint.2005.11.002.

    Article  Google Scholar 

  14. ZHU Dong. On some aspects of numerical solutions of thin-film and mixed elastohydrodynamic lubrication [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221(5): 561–579. DOI: https://doi.org/10.1243/13506501JET259.

    Article  Google Scholar 

  15. HE Tao, REN Ning, ZHU Dong, WANG Jia-xu. Plasto-elastohydrodynamic lubrication in point contacts for surfaces with three-dimensional sinusoidal waviness and real machined roughness [J]. Journal of Tribology, 2014, 136(3): 031504. DOI:https://doi.org/10.1115/1.4027478.

    Article  Google Scholar 

  16. HE Tao, WANG Jia-xu, WANG Zhan-jiang, ZHU Dong. Simulation of plasto-elastohydrodynamic lubrication in line contacts of infinite and finite length [J]. Journal of Tribology, 2015, 137(4): 041505. DOI:https://doi.org/10.1115/1.4030690.

    Article  Google Scholar 

  17. HE Tao, ZHU Dong, WANG Jia-xu, WANG Q J. Experimental and numerical investigations of the Stribeck curves for lubricated counterformal contacts [J]. Journal of Tribology, 2017, 139(2): 021505. DOI:https://doi.org/10.1115/1.4034051.

    Article  Google Scholar 

  18. OKAMURA H. A contribution to the numerical analysis of isothermal elastohydrodynamic lubrication [C]// Tribology of Reciprocating Engines: Proceedings of the 9th Leeds-Lyon Symposium on Tribology. Butterworths, Guilford, England, 1982: 313–320. https://ci.nii.ac.jp/naid/10027808483.

  19. HUGHES T G, ELCOATE C D, EVANS H P. Coupled solution of the elastohydrodynamic line contact problem using a differential deflection method [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214(4): 585–598. DOI: https://doi.org/10.1243/0954406001523920.

    Google Scholar 

  20. VENNER C. H. Multilevel Solution of the EHL Line and Point Contact Problems [D]. Netherlands, USA: University of Twente, 1991. https://www.doc88.com/p-49159780751.html.

    Google Scholar 

  21. AI Xiao-lan. Numerical analyses of elastohydrodynamically lubricated line and point contacts with rough surfaces by using semi-system and multigrid methods [D]. Evanston, USA: Northwestern University, 1993. https://www.researchgate.net/publication/35788331_Numerical_analyses_of_elastohydrodynamically_lubricated_line_and_point_contacts_with_rough_surfaces_by_using_semi-system_and_multigird_sic_methods.

    Google Scholar 

  22. PU Wei, WANG Jia-xu, ZHU Dong. Progressive mesh densification method for numerical solution of mixed elastohydrodynamic lubrication [J]. Journal of Tribology, 2016, 138(2): 021502. DOI:https://doi.org/10.1115/1.4031495.

    Article  Google Scholar 

  23. ZHAO Jia-xin, SADEGHI F, HOEPRICH M H. Analysis of EHL circular contact start up: part II: Surface temperature rise model and results [J]. Journal of Tribology, 2001, 123(1): 75–82. DOI: https://doi.org/10.1115/1.1332395.

    Article  Google Scholar 

  24. ZHAO Jia-xin, SADEGHI F. Analysis of EHL circular contact shut down [J]. Journal of Tribology, 2003, 125(1): 76–90. DOI: https://doi.org/10.1115/1.1481366.

    Article  Google Scholar 

  25. LU Xi-qun, DONG Qing-bing, ZHOU Kun, ZHAO Bin, ZHAO Bo. Numerical analysis of transient elastohydrodynamic lubrication during startup and shutdown processes [J]. Journal of Tribology, 2018, 140(4): 041504. DOI: https://doi.org/10.1115/1.4039371.

    Article  Google Scholar 

  26. WANG Zong-zheng, PU Wei, HE Tao, WANG Jia-xu, CAO Wei. Numerical simulation of transient mixed elastohydrodynamic lubrication for spiral bevel gears [J]. Tribology International, 2019, 139: 67–77. DOI: https://doi.org/10.1016/j.triboint.2019.06.032.

    Article  Google Scholar 

  27. LI Tian-xing, AN Xiao-tao, DENG Xiao-zhong, LI Jin-fan, LI Yu-long. A new tooth profile modification method of cycloidal gears in precision reducers for robots [J]. Applied Sciences, 2020, 10(4): 1266. DOI: https://doi.org/10.3390/app10041266.

    Article  Google Scholar 

  28. LI Li-xing. The modification manner for tooth profile and the analysis of forces on the cycloid disk of a cycloid speed reducer [J]. Journal of Dalian Railway Institute, 1984, 5(4): 29–40. (in Chinese)

    Google Scholar 

  29. ZHU Dong, WANG Jia-xu, REN Ning, WANG Q J. Mixed elastohydrodynamic lubrication in finite roller contacts involving realistic geometry and surface roughness [J]. Journal of Tribology, 2012, 134(1): 011504. DOI: https://doi.org/10.1115/1.4005952.

    Article  Google Scholar 

  30. ROELANDS C J A. Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils [D]. The Netherlands: Technische Hogeschool Delft, 1966. http://www.doc88.com/p-6292342551839.html.

    Google Scholar 

  31. DOWSON D, HIGGINSON G R. Lubrication of rigid cylinders [M]// Elasto-Hydrodynamic Lubrication. Amsterdam: Elsevier, 1977: 30–44.

    Chapter  Google Scholar 

  32. KUMAR R, AZAM M S, GHOSH S K, KHAN H. Thermo-elastohydrodynamic lubrication simulation of the Rayleigh step bearing using the progressive mesh densification method [J]. Simulation, 2019, 95(5): 395–410. DOI: https://doi.org/10.1177/0037549718788727.

    Article  Google Scholar 

  33. SUN Zhang-dong, REN Ai-hua, WANG Hong-xia, SONG Jun. Analysis of starved lubrication characteristics for a cycloid drive [J]. Lubrication Engineering, 2019, 44(7): 69–77. (in Chinese)

    Google Scholar 

  34. WANG Q J, ZHU Dong. Interfacial mechanics: theories and methods for contact and lubrication [M]. CRC Press, 2019.

  35. ZHU Dong, WANG Q J. On the X ratio range of mixed lubrication [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226(12): 1010–1022. DOI: https://doi.org/10.1177/1350650112461867.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by HAN Ju, LI Wei and QIAO Ze-long. HAN Ju and LI Wei established the models and calculated the lubrication characteristics. HAN Ju and QIAO Ze-long analyzed the calculated results. The initial draft of the manuscript was written by HAN Ju and LI Wei. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Ju Han  (韩炬).

Ethics declarations

HAN Ju, LI Wei and QIAO Ze-long declare that they have no conflict of interest.

Additional information

Foundation item: Project(E2019209153) supported by the Natural Science Foundation of Hebei Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Li, W. & Qiao, Zl. Lubrication characteristics of cycloid pin wheel transmission of RV reducer. J. Cent. South Univ. 28, 398–417 (2021). https://doi.org/10.1007/s11771-021-4611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4611-3

Key words

关键词

Navigation