Skip to main content
Log in

DP-BPR: Destination prediction based on Bayesian personalized ranking

基于贝叶斯个性化排序的目的地预测

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience. However, the relevant research is mainly based on driving trajectory of vehicles to predict the destinations, which is challenging to achieve the early destination prediction. To this end, we propose a model of early destination prediction, DP-BPR, to predict the destinations by users’ travel time and locations. There are three challenges to accomplish the model: 1) the extremely sparse historical data make it challenge to predict destinations directly from raw historical data; 2) the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction; 3) how to learn destination preferences from historical data. To deal with these challenges, we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks. We learn the embeddings not only for users but also for locations and time under the supervision of historical data, and then use Bayesian personalized ranking (BPR) to learn to rank destinations. Experimental results on the Zebra dataset show the effectiveness of DP-BPR.

摘要

目的地预测可以帮助车辆辅助系统提前推荐相关服务, 改善用户的驾驶体验, 受到研究者的广泛关注. 然而, 相关研究主要是基于车辆的行驶轨迹来预测目的地, 难以实现早期的目的地预测. 为此, 本论文提出了一个早期目的地预测模型 DP-BPR, 通过用户的出行时间和地点来预测目的地. 该模型的实现有三个方面的挑战: 1) 稀疏的历史数据使得直接从原始数据中预测目的地非常困难; 2) 目的地不仅与出发点有关, 而且与出发时间有关, 在预测时应将两者都考虑在内; 3) 如何从历史数据中准确地学习目的地偏好. 为了应对这些挑战, 我们利用深度神经网络将稀疏的高维数据映射到稠密的低维空间, 并学习用户、 位置和时间的嵌入, 然后, 使用贝叶斯个性化排序学习并对目的地进行排名. 在 Zebra 数据集上进行了实验, 实验结果表明了 DP-BPR 的有效性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. DASH M, KOO K K, KRISHNASWAMY S P, JIN Y, SHI-NASH A. Visualize people’s mobility-both individually and collectively-using mobile phone cellular data [C]//IEEE International Conference on Mobile Data Management. IEEE, 2016, 1: 341–344. DOI: https://doi.org/10.1109/MDM.2016.59.

    Google Scholar 

  2. de BRÉBISSON A, SIMON É, AUVOLAT A, VINCENT P, BENGIO Y. Artificial neural networks applied to taxi destination prediction [EB/OL]. 2015: arXiv: 1508.00021 [cs.LG]. https://arxiv.org/abs/1508.00021. DOI: https://doi.org/10.13140/RG.2.2.20264.26888.

  3. KE Yang-bin. Travel destination prediction based on deep learning and regression classification model [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)

    Google Scholar 

  4. HE Ya-nan. Travel destination prediction based on Markov model [D]. Changchun: Jilin University, 2017. (in Chinese)

    Google Scholar 

  5. LV Jian-ming, SUN Qing-hui, LI Qing, MOREIRA-MATIAS L. Multi-scale and multi-scope convolutional neural networks for destination prediction of trajectories [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3184–3195. DOI: https://doi.org/10.1109/TITS.2019.2924903.

    Article  Google Scholar 

  6. XU Jia-jie, ZHAO Jing, ZHOU Rui, LIU Cheng-fei, ZHAO Peng-peng, ZHAO Lei. Destination prediction a deep learningbased approach [J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(2): 651–666. DOI: https://doi.org/10.1109/TKDE.2019.2932984.

    Article  Google Scholar 

  7. ZHANG Ling-yu, HU Tao, MIN Yue, WU Guo-bin, ZHANG Jun-ying, FENG Peng-cheng, GONG Ping-hua, YE Jie-ping. A taxi order dispatch model based on combinatorial optimization [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. HalifaxNS Canada. New York, NY, USA: ACM, 2017: 2151–2159. DOI: https://doi.org/10.1145/3097983.3098138.

    Google Scholar 

  8. ZONG Fang, TIAN Yong-da, HE Ya-nan, TANG Jin-jun, LV Jian-yu. Trip destination prediction based on multi-day GPS data [J]. Physica A: Statistical Mechanics and its Applications, 2019, 515: 258–269.

    Article  Google Scholar 

  9. BESSE P C, GUILLOUET B, LOUBES J M, ROYER F. Destination prediction by trajectory distribution-based model [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(8): 2470–2481. DOI: https://doi.org/10.1109/TITS.2017.2749413.

    Article  Google Scholar 

  10. GAO Jing-xin, JUAN Zhi-cai, NI An-ning. Modeling and application of traveler destination selection behavior based on Bayesian network [J]. Journal of System& Management, 2015, 24(1): 32–37. DOI: https://doi.org/10.1016/S0169-4332(96)00598-3.

    Google Scholar 

  11. LIU Rui-han. Research on user behavior analysis based on vehicle trajectory data [D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)

    Google Scholar 

  12. ZHOU Ling-tong. Research on the destination prediction algorithm based on the historical traveling track [D]. Guangzhou: South China University of Technology, 2015. (in Chinese)

    Google Scholar 

  13. ZHOU Xiao-yun. Research on traveling destination prediction technology based on multi-scale convolution neural network [D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)

    Google Scholar 

  14. ZHANG Xiao-cai, ZHAO Zhi-xun, ZHENG Yi, LI Jin-yan. Prediction of taxi destinations using a novel data embedding method and ensemble learning [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 68–78.

    Article  Google Scholar 

  15. JIANG Jian, LIN Fei, FAN Jin, LV Hang, WU Jia. A destination prediction network based on spatiotemporal data for bike-sharing [J]. Complexity, 2019: 7643905. DOI: https://doi.org/10.1155/2019/7643905.

  16. LIU Yang, JIA Ruo, XIE Xue, LIU Zhi-yuan. A two-stage destination prediction framework of shared bicycles based on geographical position recommendation[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 11(1): 42–47. DOI: https://doi.org/10.1109/MITS.2018.2884517.

    Article  Google Scholar 

  17. LI Wen-tao, GAO Min, LI Hua, XIONG Qing-yu, WEN Jun-hao, LING Bin. A shilling attack detection algorithm based on the feature of popularity classification [J]. Acta Automatica Sinica, 2015, 41(9): 1563–1576. DOI: https://doi.org/10.16383/j.aas.2015.c150040.

    Google Scholar 

  18. ZHOU Tao, HAN Xiao-pu, YAN Xiao-yong, YANG Zi-mo, ZHAO Zhi-dan, WANG Bing-hong. Statistical mechanics of time and space characteristics of human behavior [J]. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481–540. DOI: https://doi.org/10.3969/j.issn.1001-0548.2013.04.001.

    Google Scholar 

  19. WANG Xin, LU Wei, ESTER M, WANG Can, CHEN Chun. Social recommendation with strong and weak ties [C]// Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2016: 5–14. DOI: https://doi.org/10.1145/2983323.2983701.

    Chapter  Google Scholar 

  20. ZHAO Tong, MCAULEY J, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering [C]// Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management-CIKM’14. Shanghai, China. New York: ACM Press, 2014: 261–270. DOI: https://doi.org/10.1145/2661829.2661998.

    Google Scholar 

  21. WANG Liang, YU Zhi-wen, GUO Bin, KU Tao, YI Fei. Moving destination prediction using sparse dataset [J]. ACM Transactions on Knowledge Discovery from Data, 2017, 11(3): 1–33. DOI: https://doi.org/10.1145/3051128.

    Google Scholar 

  22. DC competition [EB/OL]. https://www.pkbigdata.com/common/bbs/topicDetails.html?tid=2949.

  23. TANG Jia-xi, WANG Ke. Personalized top-N sequential recommendation via convolutional sequence embedding [C]// Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining-WSDM’18. New York, NY: ACM Press, 2018: 565–573. DOI: https://doi.org/10.1145/3159652.3159656.

    Chapter  Google Scholar 

  24. ZHANG Shi-chao, LI Xue-long, ZONG Ming, ZHU Xiao-feng, WANG Rui-li. Efficient KNN classification with different numbers of nearest neighbors [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(5): 1774–1785. DOI: https://doi.org/10.1109/TNNLS.2017.2673241.

    Article  MathSciNet  Google Scholar 

  25. BREIMANL. Random forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  26. HWANG C S, KAO Y C, YU Ping. Integrating multiple linear regression and multicriteria collaborative filtering for better recommendation [C]// 2010 International Conference on Computational Aspects of Social Networks. IEEE, 2010: 229–232. DOI: https://doi.org/10.1109/CASoN.2010.59.

  27. LIU Ling-bo, QIU Zhi-lin, LI Guan-bin, WANG Qing, OUYANG Wan-li, LIN Liang. Contextualized spatial-temporal network for taxi origin-destination demand prediction [J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3875–3887. DOI: https://doi.org/10.1109/TITS.2019.2915525.

    Article  Google Scholar 

  28. TOPALLI I, KILINC S. Modelling user habits and providing recommendations based on the hybrid broadcast broadband television using neural networks [J]. IEEE Transactions on Consumer Electronics, 2016, 62(2): 182–190. DOI: https://doi.org/10.1109/TCE.2016.7514718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JIANG Feng developed the overarching research goals. JIANG Feng and LU Zhen-ni wrote the initial draft of the manuscript. LU Zhen-ni and GAO Min carried out the experiments. JIANG Feng and LUO Da-ming analyzed the experimental results.

Corresponding author

Correspondence to Feng Jiang  (江峰).

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Project (2018YFF0214706) supported by the National Key Research and Development Program of China; Project (cstc2020jcyj-msxmX0690) supported by the Natural Science Foundation of Chongqing, China; Project (2020CDJ-LHZZ-039) supported by the Fundamental Research Funds for the Central Universities of Chongqing, China; Project(cstc2019jscx-fxydX0012) supported by the Key Research Program of Chongqing Technology Innovation and Application Development, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Lu, Zn., Gao, M. et al. DP-BPR: Destination prediction based on Bayesian personalized ranking. J. Cent. South Univ. 28, 494–506 (2021). https://doi.org/10.1007/s11771-021-4617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4617-x

Key words

关键词

Navigation