Skip to main content
Log in

Genome-wide identification and expression analysis of the MADS-box transcription factor family in Camellia sinensis

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The MADS-box genes are an important class of transcription factors and play critical roles in flower development. However, the functions of these genes in the economically important drinking plant, Camellia sinensis, are still not reported. Here, an evolutionary analysis of tea MADS-box genes was performed at whole genome level. A total of 83 MADS-box genes were identified in tea, and their gene structures and expression patterns were further analyzed. The tea MADS-box genes were classified into Mα (26), Mβ (12), Mγ (9), MIKC* (7), and MIKCC (29) clade according to their phylogenetic relationship with Arabidopsis thaliana. Several cis-elements were identified in the promoter regions of the CsMADS genes that are important in regulating growth, development, light responses, and the response to several stresses. Most CsMADS genes display clear different expression patterns in different organs and different species of tea plant. The expression of CsMADS genes can be regulated by abiotic stresses and phytohormone treatment. Our results lay the foundation for future research on the function of CsMADS genes and beneficial for improving tea agricultural traits in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97(10):5328–5333

    Article  CAS  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    Article  Google Scholar 

  • Bai G, Yang DH, Cao P, Yao H, Zhang Y, Chen X, Xiao B, Li F, Wang ZY, Yang J, Xie H (2019) Genome-wide identification, gene structure and expression analysis of the MADS-box gene family indicate their function in the development of tobacco (Nicotiana tabacum L.). Int J Mol Sci 20(20)

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112(1):1–20

    CAS  PubMed  Google Scholar 

  • Chen R, Ma J, Luo D, Hou X, Ma F, Zhang Y, Meng Y, Zhang H, Guo W (2019) CaMADS, a MADS-box transcription factor from pepper, plays an important role in the response to cold, salt, and osmotic stress. Plant Sci 280:164–174

    Article  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14(21):1935–1940

    Article  CAS  Google Scholar 

  • Dreni L, Zhang D (2016) Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J Exp Bot 67(6):1625–1638

    Article  CAS  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  Google Scholar 

  • Gregis V, Sessa A, Dorca-Fornell C, Kater MM (2009) The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J 60(4):626–637

    Article  CAS  Google Scholar 

  • Grimplet J, Martínez-Zapater JM, Carmona MJ (2016) Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genomics 17:80

    Article  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46(2):183–192

    Article  CAS  Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, Bès M, Bourrié I, Meynard D, Beeckman T, Selvaraj MG, Manabu I, Genga AM, Brugidou C, Nang Do V, Guiderdoni E, Morel JB, Gantet P (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169(4):2935–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  Google Scholar 

  • Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C (2019) Structural basis for plant MADS transcription factor oligomerization. Comput Struct Biotechnol J 17:946–953

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43(Database issue):D257–D260

    Article  CAS  Google Scholar 

  • Ma J, Yang Y, Luo W, Yang C, Ding P, Liu Y, Qiao L, Chang Z, Geng H, Wang P, Jiang Q, Wang J, Chen G, Wei Y, Zheng Y, Lan X (2017) Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.). PLoS One 12(7):e0181443

    Article  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI's conserved domain database. Nucleic Acids Res 43(Database issue):D222–D226

    Article  CAS  Google Scholar 

  • Mondal TK (2003) Micropropagation of tea (Camellia sinensis L.). Kluwer Publication, The Netherlands

    Book  Google Scholar 

  • Ó'Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201(1):16–30

    Article  Google Scholar 

  • Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15(7):1538–1551

    Article  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85–88

    Article  CAS  Google Scholar 

  • Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15(5):1159–1169

    Article  CAS  Google Scholar 

  • Ruelens P, Zhang Z, van Mourik H, Maere S, Kaufmann K, Geuten K (2017) The Origin of Floral Organ Identity Quartets. Plant Cell 29(2):229–242

    Article  CAS  Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci U S A 105(2):411–416

    Article  CAS  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97(7):3753–3758

    Article  CAS  Google Scholar 

  • Sheng XG, Zhao ZQ, Wang JS, Yu HF, Shen YS, Zeng XY, Gu HH (2019) Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biol 19(1):106

    Article  Google Scholar 

  • Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40(6):3901–3911

    Article  CAS  Google Scholar 

  • Wang P, Wang S, Chen Y, Xu X, Guang X, Zhang Y (2019) Genome-wide analysis of the MADS-box gene family in watermelon. Comput Biol Chem 80:341–350

    Article  CAS  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A 115(18):E4151–e4158

    Article  CAS  Google Scholar 

  • Wellmer F, Graciet E, Riechmann JL (2014) Specification of floral organs in Arabidopsis. J Exp Bot 65(1):1–9

    Article  CAS  Google Scholar 

  • Wellmer F, Riechmann JL (2010) Gene networks controlling the initiation of flower development. Trends Genet 26(12):519–527

    Article  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. In: Link AJ (ed) 2-D proteome analysis protocols. Humana Press, Totowa, pp 531–552

    Google Scholar 

  • Wu Y, Ke Y, Wen J, Guo P, Ran F, Wang M, Liu M, Li P, Li J, Du H (2018) Evolution and expression analyses of the MADS-box gene family in Brassica napus. PLoS One 13(7):e0200762

    Article  Google Scholar 

  • Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10(6):866–877

    Article  CAS  Google Scholar 

  • Zhang X, Fatima M, Zhou P, Ma Q, Ming R (2020) Analysis of MADS-box genes revealed modified flowering gene network and diurnal expression in pineapple. BMC Genomics 21(1):8

    Article  CAS  Google Scholar 

  • Zhang X, Li L, Yang C, Cheng Y, Han Z, Cai Z, Nian H, Ma Q (2020) GsMAS1 encoding a MADS-box transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana. Int J Mol Sci 21(6)

Download references

Funding

The authors are supported by Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Contributions

Z.-B.Z. designed the research. Z.-B.Z. and Y.-J.J. wrote the manuscript. Y.-J.J., H.-H.W., and Z.-G.F. performed the identification of MADS genes, protein structure, evolution analysis, and expression analysis. L.C. participated in manuscript preparation and revision.

Corresponding author

Correspondence to Zai-Bao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by: Izabela Pawłowicz

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Figure S1.

The relationship between intron number and gene expression level of CsMADS. (PDF 206 kb)

Table S1

(TXT 53 kb)

Table S2

(TXT 167 kb)

Table S3

(XLSX 23 kb)

Table S4

(XLSX 35 kb)

Table S5

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZB., Jin, YJ., Wan, HH. et al. Genome-wide identification and expression analysis of the MADS-box transcription factor family in Camellia sinensis. J Appl Genetics 62, 249–264 (2021). https://doi.org/10.1007/s13353-021-00621-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-021-00621-8

Keywords

Navigation