Skip to main content
Log in

Ophicalcites from the Upper Tectonic Unit on Tinos, Cyclades, Greece: mineralogical, geochemical and isotope evidence for their origin and evolution

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Ophicalcites exposed on the island of Tinos, Greece, occur as ellipsoidal bodies within greenschist-facies phyllites of the Upper Cycladic Unit. Close to their outcrops, blocks of serpentinites, metabasic rocks and metasediments were identified, implying a tectonically dismembered ophiolitic sequence in the study area. The ophicalcites comprise brecciated serpentinites cemented by calcite. Based on textural, mineralogical and deformation features, five ophicalcite varieties were discriminated, reflecting calcite precipitation, sedimentary features and increasing brecciation. Serpentinitic fragments comprise antigorite, while Cr-spinel, magnetite, talc and chlorite are accessory minerals. Carbonate veins consist of calcite and minor dolomite, talc, chlorite, and rarely epidote. Bulk rock chemical compositions and Cr-spinel mineral composition point towards a supra-subduction environment. Carbon and oxygen isotope ratios of calcite imply precipitation from mixed marine and hydrothermal fluids, followed by isotope exchange due to late, greenschist-facies overprint. The Tinos ophicalcites record intraoceanic exhumation of the ultramafics at the seafloor, where faulting and serpentinization caused an extensive network of fractures, healed by carbonates. Such intraoceanic deformation can be attributed either to obduction tectonics expressed by thrusting of oceanic piles, or to transpressional(?) transform faults, or more probably to slip along detachment fault of an oceanic core complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Péron-Pinvidic and Manatschal (2009), Bach and Früh-Green (2010)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen D, Seyfried WE Jr (2003) Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: an experimental study at 400°C, 500 bars. Geochim Cosmochim Acta 67:1531–1542

    Article  Google Scholar 

  • Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A late oligocene/early miocene high temperature belt in the attic-cycladic crystalline complex (SE Pelagonian, Greece). Geol Jb E23:97–164

    Google Scholar 

  • Arai S, Miura M (2016) Formation and modification of chromitites in the mantle. Lithos 264:77–295

    Article  Google Scholar 

  • Artemyev DA, Zaykov VV (2010) The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc (South Urals). Russ Geol Geophys 51(7):750–763. https://doi.org/10.1016/j.rgg.2010.06.03

    Article  Google Scholar 

  • Ashley KT, Caddick MJ, Steele-MacInnis MJ, Bodnar RJ, Dragovic B (2014) Geothermobarometric history of subduction recorded by quartz inclusions in garnet. Geoch Geophys Geosyst 15(2):350–360

    Article  Google Scholar 

  • Avigad D, Garfunkel Z (1989) Low angle faults underneath and above a blueschist belt—Tinos Island, Cyclades, Greece. Terra Nova 1(2):182–187

    Article  Google Scholar 

  • Avigad D, Garfunkel Z (1991) Uplift and exhumation of high-pressure metamorphic terrains: the example of the cycladic blueschist belt (Aegean Sea). Tectonophysics 188:357–372

    Article  Google Scholar 

  • Avigad D, Ziv A, Garfunkel Z (2001) Ductile and brittle shortening, extension-parallel folds and maintenance of crustal thickness in the central Aegean (Cyclades, Greece). Tectonics 20(2):277–287

    Article  Google Scholar 

  • Bach W, Früh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178. https://doi.org/10.2113/gselements.6.3.173

    Article  Google Scholar 

  • Bailey EB, McCallien WJ (1960) Some Aspects of the Steinmann Trinity, Mainly Chemical. Q J Geol Soc 116(1–4):365–395. https://doi.org/10.1144/gsjgs.116.1.0365

    Article  Google Scholar 

  • Baltatzis EG (1984) A new occurrence of ophicalcite from Paros Island. Neues Jahrb Miner Abh 150:325–329

    Google Scholar 

  • Barão LM, Trzaskos B, Angulo RJ, de Souza MC (2020) Deformation and structural evolution of mantle peridotites during exhumation on transform faults: a forced transition from ductile to brittle regime. J Struct Geol 133:103981. https://doi.org/10.1016/j.jsg.2020.103981

    Article  Google Scholar 

  • Bargnesi EA, Stockli DF, Mancktelow N, Soukis K (2013) Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece, insights from (U–Th)/He thermochronometry. Tectonophysics 595:165–182

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Avigad D, Matthews A (2009) Granitoid intrusion and high temperature metamorphism in the Asteroussia Unit, Anafi Island (Greece): petrology and geochronology. Isr J Earth Sci 58:13–27. https://doi.org/10.1560/IJES.58.1.13

    Article  Google Scholar 

  • Beccaluva L, Di Girolamo P, Macciota G, Morra V (1983) Magma affinities and fractionation trends in ophiolites. Ofioliti 8:307–324

    Google Scholar 

  • Bernoulli D, Jenkyns HC (2009) Ancient oceans and continental margins of the Alpine-Mediterranean Tethys: deciphering clues from Mesozoic pelagic sediments and ophiolites. Sedimentology 56:149–190. https://doi.org/10.1111/j.1365-3091.2008.01017.x

    Article  Google Scholar 

  • Bernoulli D, Manatschal G (2002) Ophicalcites: tectono-sedimentary breccias related to mantle exhumation. In: Abstract volume of the Annual Meeting of the Swiss Academy of Natural Sciences, Davos, Switzerland, pp 15–16

  • Bernoulli D, Weissert H (1985) Sedimentary fabrics in alpine ophicalcites, South Penine Arosa zone. Geology 13:755–758

    Article  Google Scholar 

  • Bernoulli D, Manatschal G, Desmurs L, Müntener O (2003) Where did Gustav Steinmann see the Trinity? Back to the roots of an alpine ophiolite. In: Dilek E, Newcomb S (eds) Ophiolite concept and the evolution of geological thought

  • Boillot G, Froitzheim N (2001) Non-volcanic rifted margins, continental break-up and the onset of sea-floor spreading: Some outstanding questions. Geol Soc London Sp Publ 187(1):9–30. https://doi.org/10.1144/GSL.SP.2001.187.01.02

    Article  Google Scholar 

  • Bonney TG (1879) Notes on some Ligurian and Tuscan serpentinites. Geol Mag 6(2):362–371

    Article  Google Scholar 

  • Boudier F, Al-Rajhi A (2014) Structural control on chromitite deposits in ophiolites: the Oman case. Geol Soc Lond Spec Publ 392(1):263–277. https://doi.org/10.1144/SP392.14

    Article  Google Scholar 

  • Breeding CM, Ague JJ, Bröcker M, Bolton EW (2003) Blueschist preservation in a retrograded, high-pressure, low-temperature metamorphic terrane, Tinos, Greece: Implications for fluid flow paths in subduction zones. Geoch Geoph Geos 4:1–11. https://doi.org/10.1029/2002GC000380

    Article  Google Scholar 

  • Brichau S, Ring U, Carter A, Monié P, Bolhar R, Stockli D, Brunel M (2007) Extensional faulting on Tinos Island, Aegean Sea, Greece: how many detachments? Tectonics. https://doi.org/10.1029/2006TC001969

    Article  Google Scholar 

  • Bröcker M, Enders M (1999) U-Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geol Mag 136:111–118

    Article  Google Scholar 

  • Bröcker M, Enders M (2001) Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos (Cyclades, Greece): implications for U–Pb zircon geochronology. Chem Geol 175:581–603

    Article  Google Scholar 

  • Bröcker M, Franz L (1998) Rb–Sr isotope studies on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprinting and deformational activity. Geol Mag 135(3):369–382

    Article  Google Scholar 

  • Bröcker M, Franz L (2005) P-T conditions and timing of metamorphism at the base of the Cycladic blueschist Unit, Greece: the Panormos window on Tinos re-visited. Neues Jahrb Miner 181(1):91–93

    Google Scholar 

  • Bröcker M, Keasling A (2006) Ionprobe U–Pb zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. J Metam Geol. https://doi.org/10.1111/j.1525-1314.2006.00658.x

    Article  Google Scholar 

  • Bröcker M, Kreuzer H, Matthews A, Okrusch M (1993) 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt, Greece. J Metam Geol 11:223–240. https://doi.org/10.1111/j.1525-1314.1993.tb00144.x

    Article  Google Scholar 

  • Bulle F, Bröcker M, Gärtner C, Keasling A (2010) Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece. Lithos 117:61–81

    Article  Google Scholar 

  • Cann J, Blackman D, Smith D et al (1997) Corrugated slip surfaces formed at ridge–transform intersections on the Mid-Atlantic Ridge. Nature 385:329–332. https://doi.org/10.1038/385329a0

    Article  Google Scholar 

  • Cannat M, Sauter D, Mendel V, Ruellan E, Okino K, Escartín J, Combier V, Baala M (2006) Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 34(7):605–608

    Article  Google Scholar 

  • Clerc C, Boulvais P, Lagabrielle Y, de Saint BM (2014) Ophicalcites from the Northern Pyrenean belt: a field, petrographic and stable isotope study. Int J Earth Sci 103:141–163

    Article  Google Scholar 

  • Cornelius HP (1912) Petrographische Untersuchungen in den Bergen zwischen Septiner und Julienpass. Diss Neues Jahrb Miner 35:374–498

    Google Scholar 

  • Cortesogno L, Galbiati B, Principi G (1981) Descrizione dettagliata di alcuni caratteristici affioramenti di brecce serpentiniche della Liguria orientale ed interpretazione chiave geodinamica. Ofioliti 6:47–76ed

    Google Scholar 

  • Dick HJB, Bullen T (1994) Chromian spinel as a petrographic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Miner Petrol 86:54–73

    Article  Google Scholar 

  • Dragovic B, Samanta LM, Baxter EF, Selverstone J (2012) Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: an example from Sifnos, Greece. Chem Geol 314–317:9–22. https://doi.org/10.1016/j.chemgeo.2012.04.016

    Article  Google Scholar 

  • Dragovic B, Baxter EF, Caddick MJ (2015) Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling Sifnos, Greece. Earth Planet Sci Lett 413:111–122

    Article  Google Scholar 

  • Dürr S, Altherr R, Keller J, Okrush M, Seidel E (1978) The Median Aegean Crystalline Belt: Stratigraphy, structure, metamorphism, magmatism. In: Closs H, Roeder DH, Schmidt K (eds) Alps, apennines, hellenides. IUGS report no. 38, pp 455–77

  • Eickmann B, Bach W, Rosner M, Peckmann JL (2009) Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge. Chem Geol 268(1–2):97–106. https://doi.org/10.1016/j.chemgeo.2009.08.002

    Article  Google Scholar 

  • Engel M, Reischmann T (1998) Single zircon geochrology of orthogneisses from Paros Greece. Bull Geol Soc Greece 32(3):91–99

    Google Scholar 

  • Escartín J, Smith DK, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–794. https://doi.org/10.1038/nature07333

    Article  Google Scholar 

  • Falk ES, Kelemen PB (2015) Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: complete carbonation of peridotite during ophiolite emplacement. Geoch Cosmoch Acta 160:70–90

    Article  Google Scholar 

  • Florineth D, Froitzheim N (1994) Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): evidence for Early Cretaceous opening of the Valais Ocean. Schweiz Miner Petr Mitt 74:437–448

    Google Scholar 

  • Folk RL, McBride EF (1976) Possible pedogeneic origin of Ligurian ophicalcite: a Mesozoic calichified serpentinite. Geology 4:327–332

    Article  Google Scholar 

  • Früh-Green GL, Weissert H, Bernoulli D (1990) A multiple fluid history recorded in Alpine ophiolites. J Geol Soc Lond 4:959–970

    Article  Google Scholar 

  • Fryer P (2012) Serpentinite mud volcanism: observations, processes and implications. Ann Rev Mar Sci 4:345–373. https://doi.org/10.1146/annurev-marine-120710-100922

    Article  Google Scholar 

  • Fryer P, Wheat CG, Williams T, Kelley C, Johnson K, Ryan J, Kurz W, Shervais J et al (2020) Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life. Phil Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2018.0425

    Article  Google Scholar 

  • Fu B, Valley JW, Kita NT, Spicuzza MJ, Paton C, Tsujimori T, Bröcker M, Harlow GE (2010) Multiple origins of zircons in jadeitite. Contr Miner Petrol 159(6):769–780. https://doi.org/10.1007/s00410-009-0453-y

    Article  Google Scholar 

  • Gautier P, Brun JP (1994a) Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evvia Island). Geod Acta 7:57–85

    Article  Google Scholar 

  • Gautier P, Brun JP (1994b) Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia Island). Tectonophysics 238:399–424

    Article  Google Scholar 

  • Groppo C, Forster M, Lister G, Compagnoni R (2009) Glaucophane schists and associated rocks from Sifnos (Cyclades Greece): new constraints on the P–T evolution from oxidized systems. Lithos 109:254–273. https://doi.org/10.1016/j.lithos.2008.10.005

    Article  Google Scholar 

  • Haggerty JA (1991) Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: clues for emplacement of the seamounts and their relationship to forearc tectonics. Mar Geol 102(1–4):293–309. https://doi.org/10.1016/0025-3227(91)90013-T

    Article  Google Scholar 

  • Hellenic Survey of Geology and Mineral Exploration, (2003) Map sheet 1:50.000 Tinos-Yaros

  • Hey MH (1954) A new review of the chlorites. Miner Mag 30:277–292

    Google Scholar 

  • Hinsken T, Bröcker M, Strauss H, Bulle F (2017) Geochemical, isotopic and geochronological characterization of listvenite from the Upper Unit on Tinos, Cyclades, Greece. Lithos 282–283:281–297. https://doi.org/10.1016/j.lithos.2017.02.019

    Article  Google Scholar 

  • Ildefonse B, Blackman D, John B, Ohara Y, Miller DJ, MacLeod C (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35:623–626

    Article  Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu–Mariana Fore-Arc, Leg 125. In: Fryer P, Pearce JA, Stokking LB et al. Proceedings of the Ocean Drilling Program, Scientific Results, 125:445–485

  • Jolivet L, Patriat M (1999) Ductile extension and the formation of the Aegean Sea. In: Durand B, Jolivet L, Horvath F, Serrane M (eds): The Mediterranean Basins: tertiary extension within the Alpine Orogen. Geol Soc London Spec Publ 156:427–456

  • Jolivet L, Lecomte E, Huet B, Denèle Y, Lacombe O, Labrousse L, Le Pourhiet L, Mehl C (2010) The north cycladic detachment system. Earth Plan Sci Lett 289:87–104

    Article  Google Scholar 

  • Jolivet L, Faccenna C, Huet B et al (2013) Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598:1–33. https://doi.org/10.1016/j.tecto.2012.06.011

    Article  Google Scholar 

  • Kati M, Magganas A, Melfos V, Voudouris P (2009) Sedimentology of the Larissa ophicalcite breccias: Mass flow deposits in a Tethyan Ocean-Continent Transition zone. Geophysical Research Abstracts, EGU General Assembly 2009 11, EGU2009-11002-1

  • Katsikatsos G, Migiros G, Triantaphyllis M, Mettos A, (1986) Geological structure of internal Hellenides. Geol Geoph Res Special Issue 191–212

  • Katzir Y, Matthews A, Garfunkel Z, Schliestedt M (1996) The tectono-metamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece). Geol Mag 133:237–254

    Article  Google Scholar 

  • Katzir Y, Garfunkel Z, Avigad D, Matthews A (2007) The geodynamic evolution of the Alpine orogen in the Cyclades (Aegean Sea, Greece): insights from diverse origins and modes of emplacement of ultramafic rocks. Geol Soc Lond Spec Publ 291:17–40. https://doi.org/10.1144/SP291.2

    Article  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL, Yoerger D, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson E, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig KA, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend M, Delacour AG, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Klein F, Humphris SE, Guo W, Schubotz F, Schwarzenbach EM, Orsi WD (2015) Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin. Proc Natl Acad Sci 112(39):12036–12041. https://doi.org/10.1073/pnas.1504674112

    Article  Google Scholar 

  • Lafay R, Baumgartner LP, Schwartz S, Picazo S, Montes-Hernandez G, Vennemann T (2017) Petrologic and stable isotopic studies of a fossil hydrothermal system in ultramafic environment (Chenaillet ophicalcites, Western Alps, France): processes of carbonate cementation. Lithos 294/295:319–338. https://doi.org/10.1016/j.lithos.2017.10.006

    Article  Google Scholar 

  • Lagabrielle Y, Cannat M (1990) Alpine Jurassic ophiolites resemble the modern central Atlantic basement. Geology 18(4):319–322. https://doi.org/10.1130/0091-7613(1990)018%3c0319:AJORTM%3e2.3.CO;2

    Article  Google Scholar 

  • Lagabrielle Y, Lemoine M (1997) Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. Comptes Rendus de l’Académie des Sciences Series IIA Earth and Planetary Science 325(12):909–920. https://doi.org/10.1016/S1251-8050(97)82369-5

    Article  Google Scholar 

  • Lamont TN, Roberts NMW, Searle MP, Gopon P, Waters DJ, Millar I (2020) The age, origin, and emplacement of the Tsiknias Ophiolite Tinos Greece. Tectonics 39:e2019TC005677. https://doi.org/10.1029/2019TC005677

    Article  Google Scholar 

  • Lavier LL, Manatschal G (2006) A mechanism to thin the continental lithosphere at magma-poor margins. Nature 440:324–328

    Article  Google Scholar 

  • Lavoie D, Cousineau PA (1995) Ordovician ophicalcites of Southern Quebec Appalachians: a proposed early seafloor tectonosedimentary and hydrothermal origin. J Sed Res 65A:337–347

    Google Scholar 

  • Lemoine M, Tricart P, Boillot G (1987) Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Appennines): in search for a genetic model. Geology 15:622–625

    Article  Google Scholar 

  • Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geoch Cosmoch Acta 70:3625–3645

    Article  Google Scholar 

  • MacLeod CJ, Searle RC, Murton BJ et al (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287:333–344

    Article  Google Scholar 

  • Maluski H, Bonneau M, Kienast JR (1987) Dating the metamorphic events in the Cycladic area: 39Ar/40Ar data from the metamorphic rocks of the island of Syros (Greece). Bull Soc Geol Fr 5:833–842

    Article  Google Scholar 

  • Manatschal G, Bernoulli D (1999) Architecture and tectonic evolution of nonvolcanic margins: Present-day Galicia and ancient Adria. Tectonics 18(6):1099–1119

    Article  Google Scholar 

  • Manatschal G, Müntener O (2009) A type sequence across an ancient magma-poor ocean-continent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics 473:4–19. https://doi.org/10.1016/j.tecto.2008.07.021

    Article  Google Scholar 

  • Manatschal G, Müntener O, Desmurs L, Bernoulli D (2003) An ancient ocean-continent transition in the Alps: The Totalp, Err-Platta and Malenco units in the eastern Central Alps (Graubünden and northern Italy). Ecol Geol Helv 96:131–146

    Google Scholar 

  • Martha SO, Dörr W, Gerdes A, Petschick R, Schastok J, Xypolias P, Zulauf G (2016) New structural and U-Pb zircon data from Anafi crystalline basement (Cyclades, Greece): constraints on the evolution of a Late Cretaceous magmatic arc in the Internal Hellenides. Int J Earth Sci 105(7):2031–2060. https://doi.org/10.1007/s00531-016-1346-8

    Article  Google Scholar 

  • Matthews A, Schliestedt M (1984) Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece. A stable isotope study of subduction related metamorphism. Contrib Miner Petr 88:150–163

    Article  Google Scholar 

  • Matthews A, Lieberman JL, Avigad D, Garfunkel Z (1999) Fluid-rock interaction and thermal evolution during thrusting of an Alpine metamorphic complex (Tinos Island, Greece). Contr Miner Petrol 135(2):212–224. https://doi.org/10.1007/s004100050507

    Article  Google Scholar 

  • Mavrogonatos C, Magganas A, Kati M, Voudouris P (2014) Mineralogy and petrography of the NW Tinos Island ophicalcites, Cyclades, Greece. Bullet Shkencave Gjeol Special Issue 2

  • Mavrogonatos C, Magganas A, Kati M, Voudouris P (2015) Mineralogy and petrography of metagabbros and metapyroxenites from NW Tinos Island, Cyclades, Greece. Geoph Res Abstr 17, EGU2015-8922-1

  • Melfos V, Magganas A, Voudouris P, Kati M (2009) The Mesozoic Larissa Ophicalcite-Serpentinite Association in Eastern Thessaly, Greece: mineralogical, geochemical and isotopic constraints for rocks formed in an ocean-continent transition setting. Geoph Res Abstr 11, EGU2009-10797-2

  • Melidonis N (1980) Geological structure and are geology of Tinos Island (Cyclades), (in Greek). Special studies on the Geology of Greece, Νο 13, ΙGΜΕ

  • Ohara Y (2016) The Godzilla Megamullion, the largest oceanic core complex on the earth: a historical review. Island Arc 25:193–208. https://doi.org/10.1111/iar.12116

    Article  Google Scholar 

  • Ohara Y, Ishii T (1998) Peridotites from the southern Mariana forearc: heterogeneous fluid supply in the mantle wedge. Island Arc 7:541–558

    Article  Google Scholar 

  • Okrusch M, Bröcker M (1990) Eclogites associated with high-grade blueschists in the Cyclades archipelago, Greece: a review. Eur J Miner 2:451–478

    Article  Google Scholar 

  • Papageorgakis I (1966) Rocks suitable for marble sculpturing (in Greek). Ann Geol Pays Hell 18:193–270

    Google Scholar 

  • Papanikolaou DJ (1979) Stratigraphy and structure of the Paleozoic rocks in Greece: an introduction. In: Sassi FP (ed) IGCP No. 5 Newsletter 1:93–102

  • Paraskevopoulos G, Kanaki F (1973) Genesis of the Greek ophicalcites (in Greek). Bull Geol Soc Greece 9:413–451

    Google Scholar 

  • Patriat M, Jolivet L (1998) Post-orogenic extension and shallow-dipping shear zones, study of a brecciated decollement horizon in Tinos (Cyclades, Greece). Comptes Rendus de l’Académie des Sciences Series IIA Earth and Planetary Science 326:355–362

    Google Scholar 

  • Patzak M, Okrusch M, Kreuzer H (1994) The Akrotiri unit on the island of Tinos, Cyclades, Greece: witness to a lost terrane of Late Cretaceous age. Neues Jahrb Geol Paläontol Abh 194:211–252

    Article  Google Scholar 

  • Pearce JA (2014) Immobile element fingerprinting of ofiolites. Elements 10(2):101–108

    Article  Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal Basin Geology. Geol Soc London Special Publ 16:77–94

  • Péron-Pinvidic G, Manatschal G (2009) The final rifting evolution at deep magma-poor passive margins from Iberia–Newfoundland: a new point of view. Int J Earth Sci 98:1581–1597

    Article  Google Scholar 

  • Peters T (1965) A water-bearing andradite from the Totalp serpentine (Davos, Switzerland). Am Miner 50:1482–1486

    Google Scholar 

  • Philippon M, Brunn JP, Gueydan F (2011) Tectonics of the Syros blueschists (Cyclades, Greece): from subduction to Aegean extension. Tectonics 30:TC4001. https://doi.org/10.1029/2010TC002810

    Article  Google Scholar 

  • Picazo S, Cannat M, Delacour A, Escartín L, Rouméjov S, Silantyev S (2012) Deformation associated with the denudation of mantle-derived rocks at the Mid-Atlantic Ridge 13°–15° N: the role of magmatic injections and hydrothermal alteration. Geoch Geoph Geos. https://doi.org/10.1029/2012GC004121

    Article  Google Scholar 

  • Putlitz B, Katzir Y, Matthews A, Valley JW (2001) Oceanic and orogenic fluid–rock interaction in 18O/16O-enriched metagabbros of an ophiolite (Tinos, Cyclades). Earth Planet Sci Lett 193(1):99–113. https://doi.org/10.1016/S0012-821X(01)00508-8

    Article  Google Scholar 

  • Ring U (2010) The Hellennic subduction system: High-pressure metamorphism exhumation, normal faulting, and large-scale extension. Ann Rev Earth Planet Sci 38:45–76. https://doi.org/10.1146/annurev.earth.050708.170910

    Article  Google Scholar 

  • Sánchez-Gómez M, Avigad D, Heimann A (2002) Geochronology of clasts in allochthonous Miocene sedimentary sequences on Mykonos and Paros Islands: implications for back-arc extension in the Aegean Sea. J Geol Soc Lond 159:45–60

    Article  Google Scholar 

  • Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Shanks WC III, Gaggero L, Crispini L (2012) Sulfur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites. Geochim Cosmochim Acta 91:283–305. https://doi.org/10.1016/j.gca.2012.05.021

    Article  Google Scholar 

  • Schwarzenbach EM, Früh-Green GL, Bernasconi SM, Alt JC, Plas A (2013) Serpentinization and carbon sequestration: a study of two ancient peridotite-hosted hydrothermal systems. Chem Geol 351:115–133

    Article  Google Scholar 

  • Seman S, Stockli DF, Soukis K (2017) The provenance and internal structure of the Cycladic Blueschist Unit revealed by detrital zircon geochronology, Western Cyclades Greece. Tectonics 36(7):1407–1429

    Article  Google Scholar 

  • Simonian KO, Gass IG (1978) Arakapas fault belt, Cyprus: a fossil transform fault. GSA Bull 89(8):1220–1230

    Article  Google Scholar 

  • Soukis K, Papanikolaou DJ (2004) Contrasting geometry between alpine and late-to postalpine tectonic structures in Anafi Island (Cyclades). Bull Geol Soc Greece 36(4):1688–1696

    Article  Google Scholar 

  • Soukis K, Stockli DF (2013) Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic islands, Greece. Tectonophysics 595–56:148–164. https://doi.org/10.1016/j.tecto.2012.05.017

    Article  Google Scholar 

  • Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contr Miner Petrol 42(4):287–304. https://doi.org/10.1007/BF00372607

    Article  Google Scholar 

  • Stevens RE (1944) Compositions of some chromites of the western hemisphere. Am Miner 29:1–34

    Google Scholar 

  • Stouraiti C, Pantziris I, Vasilatos C, Kanellopoulos C, Mitropoulos P, Pomonis P, Moritz R, Chiaradia M (2017) Ophiolitic remnants from the Upper and Intermediate structural Unit of the Attic-Cycladic Crystalline Belt (Aegean, Greece): fingerprinting geochemical affinities of magmatic precursors. Geosciences 7:14. https://doi.org/10.3390/geosciences7010014

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Surour AA, Arafa EH (1997) Ophicarbonates: calichified serpentinites from Gebel Mohagara, Wadi Ghadir area, Eastern Desert. Egypt J Afr Earth Sci 24(3):315–324

    Article  Google Scholar 

  • Tremblay A, Meshi A, Bédard JH (2009) Oceanic core complexes and ancient oceanic lithosphere: Insights from Iapetan and Tethyan ophiolites (Canada and Albania). Tectonophysics 473(1):36–52. https://doi.org/10.1016/j.tecto.2008.08.003

    Article  Google Scholar 

  • Tricart P, Lemoine M (1989) The Queyras ophiolite west of Monte Viso (Western Alps): indicator of a peculiar ocean floor in the Mesozoic Tethys. J Geodyn 13:163–181

    Article  Google Scholar 

  • Trommsdorff V, Evan BW, Pfeifer HR (1980) Ophicarbonate rocks: metamorphic reactions and possible origin. Archives des Sciences Genève 33:361–364

    Google Scholar 

  • Weissert H, Bernoulli D (1984) Oxygen isotope composition of calcite in Alpine ophicarbonates: a hydrothermal or Alpine metamorphic signal? Eclogae Geol Helv 77(1):29–43

    Google Scholar 

  • Whitmarsh RB, Beslier MO, Wallace PJ (eds) (1998) Proceedings of the Ocean Drilling Program, initial reports, vol 173. Ocean Drilling Program, College Station, p 493

  • Whittaker EJW, Zussman J (1956) The Characterization of Serpentine Minerals by X-ray Diffraction. Miner Mag 31:107–126

    Google Scholar 

  • Zeffren S, Avigad D, Heimann A, Gvirtzman Z (2005) Age resetting of hanging wall rocks above a low-angle detachment fault: Tinos Island (Aegean Sea). Tectonophysics 400(1):1–25. https://doi.org/10.1016/j.tecto.2005.01.003

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Associate Professors S. Lozios and P. Pomonis for their valuable help on the field work and their useful advice on various matters, and Emeritus Professor A. Katerinopoulos for his kind help and support. The authors would also like to thank the Editor in Chief Prof. W.-C. Dullo, the topic Editor, an anonymous reviewer and Dr F. Zaccarini, for providing valuable comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mavrogonatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrogonatos, C., Magganas, A., Kati, M. et al. Ophicalcites from the Upper Tectonic Unit on Tinos, Cyclades, Greece: mineralogical, geochemical and isotope evidence for their origin and evolution. Int J Earth Sci (Geol Rundsch) 110, 809–832 (2021). https://doi.org/10.1007/s00531-021-01991-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-01991-4

Keywords

Navigation