Skip to main content
Log in

A Novel Contrast Enhancement Technique using Gradient-Based Joint Histogram Equalization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Image enhancement by histogram equalization reduces the number of gray levels that lead to information loss and unnatural appearance. This paper aims to improve the contrast and preserve information and edge details by employing gradient-based joint histogram equalization. It is achieved by a multiscale-based dark pass filter, which gives the pixel’s edge information. A joint histogram is computed from the edge information and the gray-level distribution of the low contrast image to develop a discrete function. This discrete function is mapped to uniform distribution to get the final enhanced image. The proposed method is experimented on Kodak, USC-SIPI, and CSIQ databases and analyzed using various performance measures such as Contrast, standard deviation, contrast improvement index, structural similarity index, normalized entropy, and normalized mean brightness error. It is observed that the proposed method provides the highest Contrast values of 86.2, 85.79, and 86.02 in Kodak, USC-SIPI, and CSIQ databases, respectively. Normalized entropy value is found to be highest for the proposed method for all the databases. This is noticed to be 0.89, 0.84, and 0.85 for the databases Kodak, USC-SIPI, and CSIQ, respectively. The degree of the uniform distribution is measured by Kullback–Leibler distance. The proposed method produces more uniformity than other techniques available in the literature for all the three databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The datasets used in this study are publicly available. The sources are mentioned in the reference Section.

References

  1. S. Agrawal, R. Panda, P. Mishro, A. Abraham, A novel joint histogram equalization based image contrast enhancement. J. King Saud Univ. Comput. Inf. Sci. (2019)

  2. F. Albu, Linear prediction based image enhancement method, in 2015 IEEE 5th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), pp. 496–499 (2015)

  3. F. Albu, C. Vertan, C. Florea, A. Drimbarean, One scan shadow compensation and visual enhancement of color images, in 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3133–3136 (2009)

  4. P. Burt, E. Adelson, The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  5. G. Cao, H. Tian, L. Yu, X. Huang, Y. Wang, Acceleration of histogram-based contrast enhancement via selective downsampling. IET Image Proc. 12(3), 447–452 (2018)

    Article  Google Scholar 

  6. T. Celik, Two-dimensional histogram equalization and contrast enhancement. Pattern Recogn. 45(10), 3810–3824 (2012)

    Article  Google Scholar 

  7. T. Celik, Spatial entropy-based global and local image contrast enhancement. IEEE Trans. Image Process. 23(12), 5298–5308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Celik, H.C. Li, Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement. J. Mod. Opt. 63(16), 1600–1617 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.D. Chen, A.R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  10. A. Daneshmand, F. Facchinei, V. Kungurtsev, G. Scutari, Hybrid random/deterministic parallel algorithms for convex and nonconvex big data optimization. IEEE Trans. Signal Process. 63(15), 3914–3929 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Dassios, D. Baleanu, Optimal solutions for singular linear systems of Caputo fractional differential equations, in Mathematical Methods in the Applied Sciences, pp. 1–13 (2018)

  12. I. Dassios, K. Fountoulakis, J. Gondzio, A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems. SIAM J. Sci. Comput. 37(6), A2783–A2812 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. I.K. Dassios, Analytic loss minimization: theoretical framework of a second order optimization method. Symmetry 11(2), 136 (2019)

    Article  MATH  Google Scholar 

  14. V. Dhurairajan, T.S. Kumari, C.A. Bhavani, Low contrast image enhancement using Renyi entropy. Sci. Technol. Res. Inst. Defence (STRIDE) 11, 113–122 (2018)

    Google Scholar 

  15. X. Dong, S. He, V. Stojanovic, Robust fault detection filter design for a class of discrete-time conic-type non-linear Markov jump systems with jump fault signals. IET Control Theory Appl. 14(14), 1912–1919 (2020)

    Article  Google Scholar 

  16. C. Florea, F. Albu, C. Vertan, A. Drimbarean, Logarithmic tools for in-camera image processing. In IET Irish Signals and Systems Conference (ISSC 2008), pp. 394–399 (2008)

  17. U. Goel, B. Gupta, M. Tiwari, An efficient approach to restore naturalness of non-uniform illumination images. Circuits Syst. Signal Process. 38, 3384–3398 (2019)

    Article  Google Scholar 

  18. M. Jourlin, J.C. Pinoli, A model for logarithmic image processing. J. Microsc. 149(1), 21–35 (1988)

    Article  Google Scholar 

  19. P. Kandhway, A.K. Bhandari, An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. Multidimension. Syst. Signal Process. 30, 1859–1894 (2019)

    Article  MATH  Google Scholar 

  20. P. Kandhway, A.K. Bhandari, A. Singh, A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed. Signal Process. Control 56(1–14), 101677 (2020)

    Article  Google Scholar 

  21. S. Kansal, S. Purwar, R.K. Tripathi, Image contrast enhancement using unsharp masking and histogram equalization. Multimedia Tools Appl. 77(20), 26919–26938 (2018)

    Article  Google Scholar 

  22. M.F. Khan, E. Khan, Z. Abbasi, Segment selective dynamic histogram equalization for brightness preserving contrast enhancement of images. Optik 125(3), 1385–1389 (2014)

    Article  Google Scholar 

  23. Y.T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  24. Kodak: Kodak database. http://r0k.us/graphics/kodak/

  25. E. Larson, D. Chandler, Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 1–21 (2010)

    Google Scholar 

  26. C. Lee, C. Lee, C. Kim, Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  27. X. Li, R. Feng, X. Guan, H. Shen, L. Zhang, Remote sensing image mosaicking: achievements and challenges. IEEE Geosci. Remote Sens. Mag. 7(4), 8–22 (2019)

    Article  Google Scholar 

  28. X. Li, N. Hui, H. Shen, Y. Fu, L. Zhang, A robust mosaicking procedure for high spatial resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 109, 108–125 (2015)

    Article  Google Scholar 

  29. S.H. Lim, N.A.M. Isa, C.H. Ooi, K.K.V. Toh, A new histogram equalization method for digital image enhancement and brightness preservation. SIViP 9(3), 675–689 (2015)

    Article  Google Scholar 

  30. J. Mun, Y. Jang, Y. Nam, J. Kim, Edge-enhancing bi-histogram equalisation using guided image filter. J. Vis. Commun. Image Represent. 58, 688–700 (2019)

    Article  Google Scholar 

  31. M.K. Nath, S. Dandapat, Differential entropy in wavelet sub-band for assessment of glaucoma. Int. J. Imaging Syst. Technol. 22, 161–165 (2012)

    Article  Google Scholar 

  32. T. Ni, J. Zhai, A matrix-free smoothing algorithm for large-scale support vector machines. Inf. Sci. 358, 29–43 (2016)

    Article  MATH  Google Scholar 

  33. C.H. Ooi, N.S.P. Kong, H. Ibrahim, Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009)

    Article  Google Scholar 

  34. G. Pass, R. Zabih, Comparing images using joint histograms. Multimedia Syst. 07(03), 234–240 (1999)

    Article  Google Scholar 

  35. M.E. Reddy, G.R. Reddy, Recursive median and mean partitioned one-to-one gray level mapping transformations for image enhancement. Circuits Syst. Signal Process. 38, 3227–3250 (2019)

    Article  Google Scholar 

  36. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  37. D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. (Chapman and Hall/CRC, Cambridge, 2007)

    MATH  Google Scholar 

  38. J. Shin, R. Park, Histogram-based locality-preserving contrast enhancement. IEEE Signal Process. Lett. 22(9), 1293–1296 (2015)

    Article  Google Scholar 

  39. K. Sim, C. Tso, Y. Tan, Recursive sub-image histogram equalization applied to gray scale images. Pattern Recogn. Lett. 28(10), 1209–1221 (2007)

    Article  Google Scholar 

  40. K. Singh, R. Kapoor, Image enhancement using exposure based sub image histogram equalization. Pattern Recogn. Lett. 36, 10–14 (2014)

    Article  Google Scholar 

  41. V. Stojanovic, D. Prsic, Robust identification for fault detection in the presence of non-Gaussian noises: application to hydraulic servo drives. Nonlinear Dyn. 100(3), 2299–2313 (2020)

    Article  Google Scholar 

  42. J.R. Tang, N.A.M. Isa, Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Comput. Electr. Eng. 40(8), 86–103 (2014)

    Article  Google Scholar 

  43. H. Tao, P. Wang, Y. Chen, V. Stojanovic, H. Yang, An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks. J. Franklin Inst. 357(11), 7286–7307 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. USC: Usc-sipi database. http://sipi.usc.edu/database/

  45. M. Veluchamy, B. Subramani, Fuzzy dissimilarity color histogram equalization for contrast enhancement and color correction. Appl. Soft Comput. 89(1–11), 106077 (2020)

    Article  Google Scholar 

  46. D. Vijayalakshmi, M.K. Nath, O.P. Acharya, A comprehensive survey on image contrast enhancement techniques in spatial domain. Sens. Imaging 21, 40 (2020)

    Article  Google Scholar 

  47. X. Wang, L. Chen, Contrast enhancement using feature-preserving bi-histogram equalization. SIViP 12(4), 685–692 (2018)

    Article  MathSciNet  Google Scholar 

  48. Y. Wang, Q. Chen, B. Zhang, Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  49. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  50. X. Wu, X. Liu, K. Hiramatsu, K. Kashino, Contrast-accumulated histogram equalization for image enhancement, in 2017 IEEE International Conference on Image Processing (ICIP), pp. 3190–3194 (2017)

  51. P. Zeng, H. Dong, J. Chi, X. Xu, An approach for wavelet based image enhancement, in 2004 IEEE International Conference on Robotics and Biomimetics, pp. 574–577 (2004)

Download references

Acknowledgements

The work has been supported by the department of ECE, National Institute of Technology Puducherry, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vijayalakshmi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, D., Nath, M.K. A Novel Contrast Enhancement Technique using Gradient-Based Joint Histogram Equalization. Circuits Syst Signal Process 40, 3929–3967 (2021). https://doi.org/10.1007/s00034-021-01655-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-021-01655-3

Keywords

Navigation