Skip to main content
Log in

Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

When colonizing new areas, alien plant species success can depend strongly on local environmental conditions. Microclimatic barriers might be the reason why some alien plant species thrive in urban areas, while others prefer rural environments. We tested the hypothesis that the climate in the native range is a good predictor of the urbanity of alien species in the invaded range. The relationship between climate in the native range and the percentage of artificially sealed surfaces (urbanity) at the occurrences of 24 emerging alien plant species, in European areas with a temperate climate (termed oceanic Europe) was evaluated. We found that alien species growing in more urban environments originated from warmer or drier native ranges than found in oceanic Europe. These results have strong conservation implications as climate-warming will likely lift climatic barriers that currently constrain numerous alien plant species to cities, boosting the role of cities as points of entry for invasive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

All code made available on Figshare.

References

  • Alberti M, Marzluff JM, Shulenberger E, Bradley G, Ryan C, Zumbrunnen C (2003) Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53:1169–1179

    Article  Google Scholar 

  • Alexander JM, Edwards PJ (2010) Limits to the niche and range margins of alien species. Oikos 119:1377–1386

    Article  Google Scholar 

  • Arnds D, Böhner J, Bechtel B (2017) Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor Appl Climatol 128:43–61

    Article  Google Scholar 

  • Bader DA, Blake R, Grimm A, Hamdi R, Kim Y, Horton R, Rosenzweig C (2018) Urban climate science. In: Rosenzweig C, Solecki W, Romero-Lankao P, Mehrotra S, Dhakal S, Ali Ibrahim S (eds) Climate change and cities: second assessment report of the urban climate change research network. Cambridge University Press, New York, pp 27–60

  • Barton K (2009) Mu-MIn: multi-model inference. R Package Version 1.43.17. http://R-Forge.R-project.org/projects/mumin/

  • Beck HE, Zimmermann NE, Mcvicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214

  • Berger S, Söhlke G, Walther GR, Pott R (2007) Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37:523–539

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B (2019) rgdal: bindings for the “Geospatial” data abstraction library. https://CRAN.R-project.org/

  • Bivand R, Lewin-Koh N (2019) maptools: tools for handling spatial objects. R package version 0.9–5. https://CRAN.R-project.org/

  • Bivand R, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer, NY

    Book  Google Scholar 

  • Bivand R, Rundel C (2019) rgeos: interface to geometry engine - open source (“GEOS”). R package version 0.5–1. https://CRAN.R-project.org/

  • Botham MS, Rothery P, Hulme PE, Hill MO, Preston CD, Roy DB (2009) Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers Distrib 15:338–345

    Article  Google Scholar 

  • Brans KI, Govaert L, Engelen JMT, Gianuca AT, Souffreau C, De Meester L (2017) Eco-evolutionary dynamics in urbanized landscapes: evolution, species sorting and the change in zooplankton body size along urbanization gradients. Philos Trans R Soc B Biol Sci 372:1–11

    Google Scholar 

  • Brummitt RK, Pando F, Hollis S, Brummitt NA (2001) World geographical scheme for recording plant distributions. In: International working group on taxonomic databases for plant sciences (TDWG), 2nd edn. Archived from the original on 2016-01-25. Retrieved 2016-04-06. 1–153

  • Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110

    Article  Google Scholar 

  • Čeplová N, Kalusová V, Lososová Z (2017) Effects of settlement size, urban heat island and habitat type on urban plant biodiversity. Landsc Urban Plan 159:15–22

    Article  Google Scholar 

  • Chamberlain S, Barve V, Mcglinn D, Oldoni D, Desmet P, Geffert L et al (2020) rgbif: interface to the global biodiversity information facility API. R package version 1.3.0

  • Chamberlain S, Szocs E, Foster Z, Arendsee Z, Boettinger C, Ram K et al (2019) taxize: taxonomic information from around the web. R package version 0.9.9. https://github.com/ropensci/taxize

  • Cosgrove A, Berkelhammer M (2018) Downwind footprint of an urban heat island on air and lake temperatures. npj Clim Atmos Sci 1:1–10

    Article  Google Scholar 

  • Crawley MJ (2013) The R Book. R B, Chichester, West Sussex, United Kingdom

    Google Scholar 

  • Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24

    Article  Google Scholar 

  • Dakskobler I, Vreš B (2009) Cyperus eragrostis Lam. - A new adventitious species in the Flora of Slovenia. Hacquetia 8:79–90

    Article  Google Scholar 

  • Douma JC, Weedon JT (2019) Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol Evol 10:1412–1430

    Article  Google Scholar 

  • Dullinger I, Wessely J, Bossdorf O, Dawson W, Essl F, Gattringer A et al (2017) Climate change will increase the naturalization risk from garden plants in Europe. Glob Ecol Biogeogr 26:43–53

    Article  PubMed  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Elliott CW, Fischer DG, LeRoy CJ (2011) Germination of three native Lupinus species in response to temperature. Northwest Sci 85:403–410

    Article  Google Scholar 

  • ESA 2017 Land Cover CCI Product User Guide Version 2. Tech Rep

  • Essl F (2007) From ornamental to detrimental? The incipient invasion of Central Europe by Paulownia tomentosa. Preslia 79:377–389

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol

  • Fortuniak K, Kłysik K, Wibig J (2006) Urban - Rural contrasts of meteorological parameters in Łódź. Theor Appl Climatol 84:91–101

    Article  Google Scholar 

  • Fried G, Caño L, Brunel S, Beteta E, Charpentier A, Herrera M et al (2016) Botany letters monographs on invasive plants in Europe: Baccharis halimifolia L. Bot Lett 163:127–153

    Article  Google Scholar 

  • Gaertner M, Wilson JR, Cadotte MW, MacIvor JS, Zenni RD, Richardson DM et al (2017) Non-native species in urban environments: patterns, processes, impacts and challenges. Biol Invasions 19:3461–3469

    Article  Google Scholar 

  • GBIF: The Global Biodiversity Information Facility (2020) What is GBIF? Available from https://www.gbif.org/what-is-gbif

  • GBIF Secretariat (2019) GBIF backbone taxonomy. Checklist dataset. Available at: https://doi.org/10.15468/39omei. Accessed 8 Feb 2020

  • Geletič J, Lehnert M, Savić S, Milošević D (2019) Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Build Environ 156:21–32

    Article  Google Scholar 

  • Godefroid S, Ricotta C (2018) Alien plant species do have a clear preference for different land uses within urban environments. Urban Ecosyst 21:1189–1198

    Article  Google Scholar 

  • Guilbault KR, Brown CS, Friedman JM, Shafroth PB (2012) The influence of chilling requirement on the southern distribution limit of exotic Russian olive (Elaeagnus angustifolia) in western North America. Biol Invasions 14:1711–1724

    Article  Google Scholar 

  • Hamdi R, Giot O, De Troch R, Deckmyn A, Termonia P (2015) Future climate of Brussels and Paris for the 2050s under the A1B scenario. Urban Clim 12:160–182

    Article  Google Scholar 

  • Hamdi R, Termonia P, Baguis P (2011) Effects of urbanization and climate change on surface runoff of the Brussels Capital Region: a case study using an urban soil – vegetation – atmosphere-transfer model. Int J Climatol 31:1959–1974

    Article  Google Scholar 

  • Harmonia database (2019) Belgian forum on invasive species. Available at: https://ias.biodiversity.be/definitions#legal. Accessed 20 Sept 2019

  • Hijmans RJ (2019) raster: geographic data analysis and modeling. R package version 3.0–7

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) dismo: species distribution modeling. R package version 1.1–4

  • Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Husson F, Josse J, Le S, Maintainer JM (2020) Multivariate exploratory data analysis and data mining. Cran 1:1–100

  • Iefländer A, Lauerer M (2007) Spontanvorkommen von Duchesnea indica: Ein Neophyt breitet sich in den letzten Jahren verstärkt aus. Berichte der Bayer Bot Gesellschaft 77:187–200

    Google Scholar 

  • Kaiser A, Merckx T, Van Dyck H (2016) The Urban Heat Island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol Evol 6:4129–4140

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassambara A, Mundt F (2017) Package “factoextra” for R: extract and visualize the results of multivariate data analyses. R Package version

  • Kendal D, Williams NSG, Williams KJH (2012) A cultivated environment: Exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst 15:637–652

    Article  Google Scholar 

  • van Kleunen M, Essl F, Pergl J, Brundu G, Carboni M, Dullinger S et al (2018) The changing role of ornamental horticulture in alien plant invasions. Biol Rev 93:1421–1437

    Article  PubMed  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E et al (2014) Europe. In: Climate change 2014: impacts, adaptation and vulnerability: part B: regional aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, pp 1267–1326

  • Lambdon PW, Hulme PE (2006) Predicting the invasion success of Mediterranean alien plants from their introduction characteristics. Ecography (Cop) 29:853–865

    Article  Google Scholar 

  • Lembrechts JJ, Rossi E, Milbau A, Nijs I (2018) Habitat properties and plant traits interact as drivers of non-native plant species’ seed production at the local scale. Ecol Evol 8:4209–4223

    Article  PubMed  PubMed Central  Google Scholar 

  • von der Lippe M, Säumel I, Kowarik I (2005) Cities as drivers for biological invasions - The role of urban climate and traffic. Erde 136:123–143

    Google Scholar 

  • Lorenz JM, Kronenber R, Bernhofer C, Niyogi D (2019) Urban rainfall modification: observational climatology over Berlin. Germany J Geophys Res Atmos 124:731–746

    Article  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. Proc Natl Inst Sci India 2:49–55

    Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop) 36:1058–1069

    Article  Google Scholar 

  • Miller JD, Hutchins M (2017) The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J Hydrol Reg Stud 12:345–362

    Article  Google Scholar 

  • Oke TR (1981) Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J Climatol 1:237–254

    Article  Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Olden JD, Rooney TP (2006) On defining and quantifying biotic homogenization. Glob Ecol Biogeogr 15:113–120

    Article  Google Scholar 

  • Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Ortega YK, Pearson DE (2005) Weak vs. strong invaders of natural plant communities: assessing invasibility and impact. Ecol Appl 15:651–661

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography (Cop) 40:887–893

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings, Twenty-First Int. Conf. Mach. Learn. ICML 2004, pp 655–662

  • POWO (2020) Plants of the World Online. Published on the Internet, Facilitated by the Royal Botanic Gardens, Kew

    Google Scholar 

  • Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J, Arianoutsou M et al (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci U S A 107:12157–12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyšek P, Pergl J, Essl F (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • RStudio Team (2016) RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/

  • Scalenghe R, Ajmone-Marsan F (2009) The anthropogenic sealing of soils in urban areas. Landsc Urban Plan 90:1–10

    Article  Google Scholar 

  • Schierenbeck KA (2004) Japanese Honeysuckle (Lonicera japonica) as an Invasive Species; History, Ecology, and Context. CRC Crit Rev Plant Sci 23:391–400

    Article  Google Scholar 

  • Schlünzen KH, Hoffmann P, Rosenhagen G, Riecke W (2010) Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg. Int J Climatol 30:1121–1136

    Article  Google Scholar 

  • Schmidt KJ, Poppendieck HH, Jensen K (2014) Effects of urban structure on plant species richness in a large European city. Urban Ecosyst 17:427–444

    Article  Google Scholar 

  • Schrader G, Klingenstein F (2006) Pest risk analysis for Lysichiton americanus Hultén & ST. John (Araceae)

  • Stanton KM, Mickelbart MV (2014) Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic Res 1:1–7

    Article  Google Scholar 

  • Sukopp H, Starfinger U (1995) Reynoutria sachalinensis in Europe and in the far east: a comparison of the species ecology in its native and adventive distribution range. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasion - general aspects and special problems. pp 151–159

  • Szymura TH, Szymura M, Zając M, Zając A (2018) Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Sci Total Environ 626:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Terama E, Clarke E, Rounsevell MDA, Fronzek S, Carter TR (2019) Modelling population structure in the context of urban land use change in Europe. Reg Env Chang 19:667–677

    Article  Google Scholar 

  • Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

  • Ward K, Lauf S, Kleinschmit B, Endlicher W (2016) Heat waves and urban heat islands in Europe: a review of relevant drivers. Sci Total Environ 569–570:527–539

    Article  PubMed  Google Scholar 

  • Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511:216–219

    Article  CAS  PubMed  Google Scholar 

  • Zieritz A, Gallardo B, Baker SJ, Britton RJ, van Valkenburg JLCH, Verreycken H et al (2017) Changes in pathways and vectors of biological invasions in Northwest Europe. Biol Invasions 19:269–282

    Article  Google Scholar 

  • Zipper SC, Schatz J, Kucharik CJ, Loheide SP (2017) Urban heat island-induced increases in evapotranspirative demand. Geophys Res Lett 44:873–881

    Article  Google Scholar 

Download references

Funding

This work was supported by the Fonds de la Recherche Scientifique (FNRS).

Author information

Authors and Affiliations

Authors

Contributions

C.G., J.J.L., I.N. and A.M. designed the research, J.B. and C.G. performed the native range modelling, C.G. did the analyses and led paper writing, all authors contributed substantially to revisions. We thank two anonymous reviewers for their suggestions and comments.

Corresponding author

Correspondence to Charly Géron.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Availability of data and material

No new data were used, pre-processed data made available on Figshare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Géron, C., Lembrechts, J., Borgelt, J. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol Invasions 23, 1765–1779 (2021). https://doi.org/10.1007/s10530-021-02469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-021-02469-9

Keywords

Navigation