Skip to main content
Log in

The study of second-order coupling of cladding modes of helical long-period gratings inscribed by commercial welding machine

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A presentation based on the helical long-period grating (H-LPFG) affected by the change of temperature and twist has been demonstrated. There are two resonant peaks near 1451 nm (resonant peak 1) and 1519 nm (resonant peak 2) when the pitch length is about 757 μm. The resonant peak 1 is caused by second-order diffraction coupling between the fundamental mode and the LP110 cladding mode, and the resonant peak 2 is caused by first-order diffraction coupling between the fundamental mode and the LP15 cladding mode. Their temperature sensitivities are 72 pm/℃ and 45 pm/℃, respectively. The resonant peak 1 twist sensitivities are − 138 nm·mm/rad with co-direction twist and 133 nm·mm/rad with contrary-direction twist, but the resonant peak 2 is insensitive to twist. This indicates that at the resonant peak 2, the H-LPFG can measure temperature without cross-impact by twist. Therefore, this can be applied to measure temperature and twist at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.I. Kopp, V.M. Churikov, J. Singer et al., Chiral fiber gratings. Science 305(5680), 74–75 (2004)

    Article  ADS  Google Scholar 

  2. S. Oh, K.R. Lee, U.C. Paek, Y. Chung, Fabrication of helical long-period fiber gratings by use of a CO2 laser. Opt. Lett. 29(13), 1464–1466 (2004)

    Article  ADS  Google Scholar 

  3. C. Jáuregui, J.M. López-Higuera, Virtual long-period gratings. Opt. Lett. 30(1), 14–16 (2005)

    Article  ADS  Google Scholar 

  4. A. Michie, J. Canning, I. Bassett, J. Haywood et al., Spun elliptically birefringent photonic crystal fibre. Opt. Express. 15(4), 1811–1816 (2007)

    Article  ADS  Google Scholar 

  5. W. Shin, B.A. Yu, Y.C. Noh et al., Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities. Opt. Lett. 32(10), 1214–1216 (2007)

    Article  ADS  Google Scholar 

  6. V.M. Churikov, V.I. Kopp, A.Z. Genack, Chiral diffraction gratings in twisted microstructured fibers. Opt. Lett 35(3), 342–344 (2010)

    Article  ADS  Google Scholar 

  7. K.L.G. Wong, X. Xi, M.S. Kang et al., Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337(6093), 446–449 (2012)

    Article  ADS  Google Scholar 

  8. R. Gao, Y. Jiang, L. Jiang, Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor. Opt. Express. 22(13), 15697–15709 (2014)

    Article  ADS  Google Scholar 

  9. L. Zhang, Y. Liu, Y. Zhao et al., High sensitivity twist sensor based on helical long-period grating written in two-mode Fiber. IEEE. Photonic. Tech. L. 28(15), 1629–1632 (2016)

    Article  ADS  Google Scholar 

  10. H.L. Zhang, W.G. Zhang, L. Chen et al., Bidirectional torsion sensor based on a pair of helical long-period fiber gratings. IEEE. Photonic. Tech. L. 28(15), 1700–1702 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Wang, H. Li, Helical long-period grating formed in a thinned fiber and its application to a refractometric sensor. Appl. Opt. 55(6), 1430–1434 (2016)

    Article  ADS  Google Scholar 

  12. B. Sun, W. Wei, C.R. Liao, L. Zhang, Z.X. Zhang et al., Automatic arc discharge-induced helical long period fiber gratings and its sensing applications. IEEE. Photonic. Tech. L. 29(11), 873–876 (2017)

    Article  ADS  Google Scholar 

  13. V.I. Kopp, V.M. Churikov et al., Single- and double-helix chiral fiber sensors. J. Opt. Soc. Am. B. 24(10), A48–A52 (2007)

    Article  ADS  Google Scholar 

  14. L.L. Xian, P. Wang, H.P. Li, Power-interrogated and simultaneous measurement of temperature and torsion using paired helical long-period fiber gratings with opposite helicities. Opt. Express. 22(17), 20260–20267 (2014)

    Article  ADS  Google Scholar 

  15. G.K.L. Wong, M.S. Kang, H.W. Lee, F. Biancalana et al., Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science 337(6093), 446–449 (2012)

    Article  ADS  Google Scholar 

  16. C.L. Fu, S. Liu, Z.Y. Bai, J. He et al., Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen–oxygen flame. J. Lightwave. Technol. 36(9), 1683–1688 (2018)

    Article  ADS  Google Scholar 

  17. Y. Zhang, Z. Bai, C. Fu, S. Liu, J. Tang, J. Yu et al., Polarization-independent orbital angular momentum generator based on a chiral fiber grating. Opt. Lett. 44(1), 61–64 (2019)

    Article  ADS  Google Scholar 

  18. C.L. Fu, Y.P. Wang, Z.Y. Bai, S. Liu et al., Twist-direction-dependent orbital angular momentum generator based on inflation-assisted helical photonic crystal fiber. Opt. Lett. 44(2), 459–462 (2019)

    Article  ADS  Google Scholar 

  19. H. Zhao, P. Wang, T. Yamakawa, H.P. Li, All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating. Opt. Lett. 44(21), 5370–5373 (2019)

    Article  ADS  Google Scholar 

  20. X.D. He, J.J. Tu, X.W. Wu, S.C. Gao, L. Shen et al., All-fiber third-order orbital angular momentum mode generation employing an asymmetric long-period fiber grating. Opt. Lett. 45(13), 3621–3624 (2020)

    Article  ADS  Google Scholar 

  21. C.C. Xu, C. Jiang, Y.Q. Liu, High diffraction order cladding modes of helical long-period gratings inscribed by CO2 laser. Appl. Opt. 59(10), 3086–3092 (2020)

    Article  ADS  Google Scholar 

  22. Y. Rao, Y. Wang, Z. Ran, T. Zhu, Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightwave Technol. 21(5), 1320–1327 (2003)

    Article  ADS  Google Scholar 

  23. O.V. Ivanov, Propagation and coupling of hybrid modes in twisted fibers. J. Opt. Soc. Am. 22, 716–723 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Shvets, S. Trendafilov, V. Kopp, D. Neugroschl, A. Genack, Polarization properties of chiral fiber gratings. J. Opt. A-Pure. Appl. Op. 11(7), 074007 (2009)

    Article  ADS  Google Scholar 

  25. M. Napiorkowski, W. Urbanczyk, Role of symmetry in mode coupling in twisted microstructured optical fibers. Opt. Lett. 43(3), 395–398 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is support by the Science and Technology Research Program of Chongqing Education Commission of China (KJQN20200142) and (KJZDM202001401). University Innovation Research Group of Shale Gas Optical Fiber Intelligent Sensing Technology (CXQT20027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suihu Dang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., He, Z., Bai, J. et al. The study of second-order coupling of cladding modes of helical long-period gratings inscribed by commercial welding machine. Appl. Phys. B 127, 35 (2021). https://doi.org/10.1007/s00340-021-07583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07583-z

Navigation