Skip to main content

Advertisement

Log in

Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study aims to study the radiation shielding features of TeO2–WO3–RO systems (where RO =PbO and Bi2O3). The glasses were theoretically evaluated by using the simulation code Phy–X/PSD. Four TeO2–WO3–Bi2O3 glasses and three TeO2–WO3–PbO glasses were tested in this study. The linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), effective atomic number (Zeff), half value layer (HVL), tenth value layer (TVL), and mean free path (MFP) of the glasses were calculated and analyzed. WTeBi3 and WTeBi4 have the greatest LAC and MAC values at all energies, while WTePb1 had the least LAC and MAC values. At 0.347 MeV, the MAC of the glasses is equal to 0.115 0.117, and 0.107 cm2/g for WTeBi3, WTeBi4, and WTePb1, respectively. The Zeff of the glasses decreased and increased based on the photon interaction phenomena present in low, medium, and high energy ranges. WTeBi2 has the greatest HVL, equal to 2.070 cm and 2.594 cm at 1.333 and 2.506 MeV, respectively, while WTeBi3 has the least, 1.943 cm and 2.532 cm for the same energies, respectively. The TVL values followed the order of WTePb1 < WTePb2 < WTeBi2 < WTePb3 < WTeBi1 < WTeBi3 < WTeBi4 at both the tested energies. The greatest MFPs were observed at the greatest selected energy, 2.506 MeV. The TeO2–WO3–Bi2O3 glasses and TeO2–WO3–PbO glasses were compared against each other and with some other radiation glasses to determine the most effective attenuator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Bejot, F. Billard, C. Peureux, T. Diard, J. Picot-Cl emente, C. Strutynski, P. Mathey, O. Mouawad, O. Faucher, K. Nagasaka, Y. Ohishi, F. Smektala, Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass, Opt. Commun. 380, 245–249 (2016)

  2. G. Lakshminarayana, Kawa M. Kaky, S.O. Baki, Song Ye, A. Lira, I.V. Kityk, M.A. Mahdi, Concentration dependent structural, thermal, and optical features of Pr+3-doped multicomponent tellurite glasses, J. Alloys Compds. 686, 769–784 (2016).

  3. Y. Al-Hadeethi, M.I. Sayyed, Hiba Mohammed. Lia Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies, Ceramics International 46, 251–257 (2020)

  4. Jianhui Huang, Liaolin Zhang, Libing Xia, Xiao Shen, Wei Wei, Weixiong You, Highly efficient ~3.4 μm emission of Er3+-doped TeO2 based glasses via resonant energy transfer and multi-phonon relaxation processes. Opt. Mater. 108, 110387 (2020)

  5. Y. Zhang, Z. Xiao, H. Lei, L. Zeng, J. Tang, Er+3/ Yb+3 co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations. J. Lumin. 212, 61–68 (2019)

    Article  Google Scholar 

  6. M.M. Taniguchi, V.S. Zanuto, P.N. Portes, L.C. Malacarne, N.G. Castelli Astrath, J.D. Marconi, M.P. Belançon, Glass engineering to enhance Si solar cells: a case study of Pr+3Yb+3 codoped tellurite-tungstate as spectral converter, J. Non.- Crys. Sol. 526, 119717 (2019)

  7. Y. Al-Hadeethi, M.I. Sayyed, A comprehensive study on the effect of TeO2 on the radiation shielding properties of TeO2–B2O3–Bi2O3–LiF–SrCl2 glass system using Phy-X / PSD software. Ceram. Int. 46, 6136–6140 (2020)

    Article  Google Scholar 

  8. S. Nandyala, P. Gomes, G. Hungerford, L. Grenho, M.H. Fernandez, A. Stamboulis, Development of bioactive tellurite-lanthanide ions-reinforced hydroxyapatite composites for biomedical and luminescence applications, in: R. El-Mallawany (Ed.), Tellurite Glass Smart Materials, first ed.. Springer, Heidelberg (2018), pp. 275–288

  9. Y. Al-Hadeethi, M.I. Sayyed, BaO–Li2O–B2O3 glass systems: Potential utilization in gamma radiation protection. Prog. Nucl. Energy 129, 103511 (2020)

    Article  Google Scholar 

  10. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of borotellurite glass. J. Non-Cryst. Solids 512, 140–147 (2019)

    Article  ADS  Google Scholar 

  11. M.I. Sayyed, Y. Al-Hadeethi, Maha M. AlShammari, Moustafa Ahmed, Saleh H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3, Ceramics Int. 47, 611–618 (2021)

  12. Imed Boukhris, Imen Kebaili, M. S. Al-Buriahi, Chahkrit Sriwunkum, and M. I. Sayyed. Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses." Appl. Phys. A 126(10), 1–10 (2020)

  13. Imen Kebaili, Imed Boukhris, M. S. Al-Buriahi, Amani Alalawi, and M. I. Sayyed. Ge-Se-Sb-Ag chalcogenide glasses for nuclear radiation shielding applications. Ceramics Int. 47(1), 1303–1309 (2020).

  14. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cement Concr. Compos. 28(2), 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  Google Scholar 

  15. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120171

    Article  Google Scholar 

  16. R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 46, 21120–21127 (2020)

    Article  Google Scholar 

  17. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  18. M. Dong,B.O.ELbashir, M. I. Sayyed,.Enhancement of gamma ray shielding properties by PbO partial replacement of WO3 in ternary 60TeO2–(40-x)WO3–xPbO glass system. Chalcogenide Lett. 14, 113–118 (2017)

  19. J. Ozdanova, H. Ticha, L. Tichy, Optical band gap and Raman spectra in some (Bi2O3)x(WO3)y(TeO2)100xy and (PbO)x(WO3)y(TeO2)100xy glasses. J. Non-Cryst. Solids 355, 2318–2322 (2009)

    Article  ADS  Google Scholar 

  20. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Rad Phys Chem 166, 108496 (2020)

    Article  Google Scholar 

  21. M.H.A. Mhareb, Physical, optical and shielding features of Li2O–B2O3–MgO–Er2O3 glasses co-doped of Sm2O3. Appl. Phys. A 126, 71 (2020)

    Article  ADS  Google Scholar 

  22. Y.S. Alajerami, D. Drabold, M.H.A. Mhareb, Katherine Leslee, A Cimatu, Gang Chen, M Kurudirek, Radiation shielding properties of bismuth borate glasses doped with different concentrations of cadmium oxides. Ceram. Int. 46, 12718–12726 (2020)

  23. Recep Kurtulus, Taner Kavas, Iskender Akkurt, Kadir Gunoglu, Theoretical and experimental gamma-rays attenuation characteristics of waste soda-lime glass doped with La2O3 and Gd2O3. Ceramics Int. (In press). https://doi.org/10.1016/j.ceramint.2020.11.207

  24. Mengge Dong, Xiangxin Xue, Ashok Kumar, He Yang, M.I. Sayyed, Shan Liu, Erjun Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazardous Mater. 344, 602–614 (2018)

  25. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Eff. Defects Solids 173(7–8), 657–672 (2018)

    Article  ADS  Google Scholar 

  26. M. Dong, X. Xue, He. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 318, 751–757 (2016)

    Article  Google Scholar 

  27. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results in Physics 9, 541–549 (2018)

    Article  ADS  Google Scholar 

  28. S. Yasmin, B.S. Barua, M.U. Khandaker, M.T. Chowdhury, M. Kamal, M.A. Rashid, M.M.H. Miah, D.A. Bradley, Investigation of ionizing radiation shielding effectiveness of decorative building materials used in Bangladeshi dwellings. Radiat. Phys. Chem. 140, 98–102 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Sayyed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almuqrin, A.H., Sayyed, M.I. Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 190 (2021). https://doi.org/10.1007/s00339-021-04344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04344-9

Keywords

Navigation