Skip to main content
Log in

An XFEM/DG Approach for Fluid-Structure Interaction Problems with Contact

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Ager, B. Schott, A.-T. Vuong, A. Popp, W. A. Wall: A consistent approach for fluid-structure-contact interaction based on a porous flow model for rough surface contact. Int. J. Numer. Methods Eng. 119 (2019), 1345–1378.

    Article  MathSciNet  Google Scholar 

  2. C. Ager, A. Seitz, W. A. Wall: A consistent and comprehensive computational approach for general fluid-structure-contact interaction problems. Available at https://arxiv.org/abs/1905.09744 (2019), 34 pages.

  3. P. Alart, A. Curnier: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92 (1991), 353–375.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Alauzet, B. Fabrèges, M. A. Fernández, M. Landajuela: Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl. Mech. Eng. 301 (2016), 300–335.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Antonietti, M. Verani, C. Vergara, S. Zonca: Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids. Finite Elem. Anal. Des. 159 (2019), 1–14.

    Article  MathSciNet  Google Scholar 

  6. D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. P. T. Baaijens: A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35 (2001), 743–761.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Basting, A. Quaini, S. C’anic, R. Glowinski: Extended ALE method for fluid-structure interaction problems with large structural displacements. J. Comput. Phys. 331 (2017), 312–336.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Bazilevs, V. M. Calo, Y. Zhang, T. J. R. Hughes: Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput. Mech. 38 (2006), 310–322.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, K.-U. Bletzinger: 3D simulation of wind turbine rotors at full scale II. Fluid-structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65 (2011), 236–253.

    Article  MATH  Google Scholar 

  11. T. Belytschko, N. Moes, S. Usui, C. Parimi: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50 (2001), 993–1013.

    Article  MATH  Google Scholar 

  12. D. Boffi, L. Gastaldi: A finite element approach for the immersed boundary method. Comput. Struct. 81 (2003), 491–501.

    Article  MathSciNet  Google Scholar 

  13. D. Boffi, L. Gastaldi: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135 (2017), 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Boffi, L. Gastaldi, L. Heltai: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17 (2007), 1479–1505.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Borazjani: Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257 (2013), 103–116.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Borazjani, L. Ge, F. Sotiropoulos: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (2008), 7587–7620.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Burman: Ghost penalty. C. R., Math., Acad. Sci. Paris 348 (2010), 1217–1220.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Burman, M. A. Fernández: Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. C. R., Math., Acad. Sci. Paris 345 (2007), 467–472.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Burman, M. A. Fernández: Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput. Methods Appl. Mech. Eng. 198 (2009), 766–784.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Burman, M. A. Fernández: An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279 (2014), 497–514.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Burman, M. A. Fernández, S. Frei: A Nitsche-based formulation for fluid-structure interactions with contact. ESAIM, Math. Model. Numer. Anal. 54 (2020), 531–564.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Burman, M. A. Fernández, P. Hansbo: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44 (2006), 1248–1274.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Burman, P. Hansbo, M. G. Larson: Augmented Lagrangian and Galerkin least-squares methods for membrane contact. Int. J. Numer. Methods Eng. 114 (2018), 1179–1191.

    Article  MathSciNet  Google Scholar 

  24. E. Burman, P. Hansbo, M. G. Larson: Augmented Lagrangian finite element methods for contact problems. ESAIM, Math. Model. Numer. Anal. 53 (2019), 173–195.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Chouly, M. Fahre, P. Hild, R. Mlika, J. Pousin, Y. Renard: An overview of recent results on Nitsche’s method for contact problems. Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering 121. Springer, Cham, 2017, pp. 93–141.

    MATH  Google Scholar 

  26. F. Chouly, P. Hild: A Nitsche-based method for unilateral contact problems: Numerical analysis. SIAM J. Numer. Anal. 51 (2013), 1295–1307.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Chouly, P. Hild: On convergence of the penalty method for unilateral contact problems. Appl. Numer. Math. 65 (2013), 27–40.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Chouly, R. Mlika, Y. Renard: An unbiased Nitsche’s approximation of the frictional contact between two elastic structures. Numer. Math. 139 (2018), 593–631.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Chouly, Y. Renard: Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems. Adv. Model. Simul. Eng. Sci. 5 (2018), Article ID 31, 38 pages.

  30. J. Donea, S. Giuliani, J. P. Halleux: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982), 689–723.

    Article  MATH  Google Scholar 

  31. C. Farhat, M. Lesoinne, P. Le Tallec: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods App. Mech. Eng. 157 (1998), 95–114.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Formaggia, F. Nobile: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999), 105–131.

    MathSciNet  MATH  Google Scholar 

  33. L. Formaggia, C. Vergara, S. Zonca: Unfitted extended finite elements for composite grids. Comput. Math. Appl. 76 (2018), 893–904.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Frei: Eulerian Finite Element Methods for Interface Problems and Fluid-Structure Interactions: PhD. Thesis. Heidelberg University, Heildelberg, 2016.

  35. S. Frei, T. Richter, T. Wick: Long-term simulation of large deformation, mechanochemical fluid-structure interactions in ALE and fully Eulerian coordinates. J. Comput. Phys. 321 (2016), 874–891.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Gerstenberger, W. A. Wall: An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 197 (2008), 1699–1714.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Glowinski, T.-W. Pan, J. Periaux: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111 (1994), 283–303.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. E. Griffith: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28 (2012), 317–345.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Hansbo, P. Hansbo: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004), 3523–3540.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Hansbo, J. Hermansson, T. Svedberg: Nitsche’s method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 4195–4206.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. W. Hirt, A. A. Amsden, J. L. Cook: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974), 227–253.

    Article  MATH  Google Scholar 

  42. N. Kikuchi, J. T. Oden: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics, Philadelphia, 1988.

    Book  MATH  Google Scholar 

  43. Life V: Available at https://bitbucket.org/lifev-dev/lifev-release/wiki/Home.

  44. Y. Liu, W. K. Liu: Rheology of red blood cell aggregation by computer simulation. J. Comput. Phys. 220 (2006), 139–154.

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Marom: Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22 (2015), 595–620.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Massing, M. G. Larson, A. Logg, M. E. Rognes: A Nitsche-based cut finite element method for a fluid-structure interaction problem. Commun. Appl. Math. Comput. Sci. 10 (2015), 97–120.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Mittal, G. Iaccarino: Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (2005), 239–261.

    Article  MathSciNet  MATH  Google Scholar 

  48. N. Moes, J. Dolbow, T. Belytschko: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999), 131–150.

    Article  MathSciNet  MATH  Google Scholar 

  49. E. Oñate, M. A. Celigueta, S. R. Idelsohn, F. Salazar, B. Suárez: Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48 (2011), 307–318.

    Article  MathSciNet  MATH  Google Scholar 

  50. N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, T.-W. Pan: A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000), 1509–1524.

    Article  MATH  Google Scholar 

  51. C. S. Peskin: Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10 (1972), 252–271.

    Article  MATH  Google Scholar 

  52. C. S. Peskin: The immersed boundary method. Acta Numerica 11 (2002), 479–517.

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Rannacher, T. Richter: An adaptive finite element method for fluid-structure interaction problems based on a fully Eulerian formulation. Fluid Structure Interaction II. Modelling, Simulation, Optimization. Lecture Notes in Computational Science and Engineering 73. Springer, Berlin, 2010, pp. 159–191.

    MATH  Google Scholar 

  54. G. Rega: Nonlinear vibrations of suspended cables I. Modeling and analysis. Appl. Mech. Rev. 57 (2004), 443–478.

    Article  Google Scholar 

  55. T. Richter: A fully Eulerian formulation for fluid-structure-interaction problems. J. Comput. Phys. 233 (2013), 227–240.

    Article  MathSciNet  Google Scholar 

  56. T. Richter: Fluid-Structure Interactions: Models, Analysis and Finite Elements. Lecture Notes in Computational Science and Engineering 118. Springer, Cham, 2017.

    MATH  Google Scholar 

  57. T. Richter, T. Wick: Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates. Comput. Methods Appl. Mech. Eng. 199 (2010), 2633–2642.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. H. Saksono, W. G. Deitmer, D. Perić: An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction. Int. J. Numer. Methods Eng. 71 (2007), 1009–1050.

    Article  MathSciNet  MATH  Google Scholar 

  59. C. Vergara, S. Zonca: Extended finite elements method for fluid-structure interaction with an immersed thick non-linear structure. Mathematical and Numerical Modeling of the Cardiovascular System and Applications. SEMA SIMAI Springer Series 16. Springer, Cham, 2018, pp. 209–243.

    Google Scholar 

  60. P. Wriggers, G. Zavarise: Computational contact mechanics. Encyclopedia of Computational Mechanics II. Solids and Structures. John Wiley & Sons, Chichester, 2004, Article ID 6.

    Google Scholar 

  61. D. Xu, E. Kaliviotis, A. Munjiza, E. Avital, C. Ji, J. Williams: Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46 (2013), 1810–1817.

    Article  Google Scholar 

  62. H. Zhang, L. Liu, M. Dong, H. Sun: Analysis of wind-induced vibration of fluid-structure interaction system for isolated aqueduct bridge. Eng. Struct. 46 (2013), 28–37.

    Article  Google Scholar 

  63. S. Zonca: Unfitted Numerical Methods for Fluid-Structure Interaction Arising Between an Incompressible Fluid and an Immersed Thick Structure: PhD. Thesis. Politecnico di Milano, Milano, 2018.

  64. S. Zonca, C. Vergara, L. Formaggia: An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (2018), B59–B84.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Formaggia.

Additional information

The authors gratefully acknowledge the financial support of the Italian MIUR by the grant PRIN12, number 201289A4LX, “Mathematical and numerical models of the cardiovascular system, and their clinical applications”. S. Zonca has been supported by “GNCS-INdAM”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formaggia, L., Gatti, F. & Zonca, S. An XFEM/DG Approach for Fluid-Structure Interaction Problems with Contact. Appl Math 66, 183–211 (2021). https://doi.org/10.21136/AM.2021.0310-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2021.0310-19

Keywords

MSC 2020

Navigation