Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glutamate transporters have a chloride channel with two hydrophobic gates

Abstract

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2,3,4,5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6,7,8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GltPh uses an elevator mechanism that can be studied by generating crosslinks between the transport and the scaffold domains.
Fig. 2: GltPh can be trapped in an open-channel conformation.
Fig. 3: Energetic landscape for the movement of Cl through GltPh-ClCS.

Similar content being viewed by others

Data availability

All relevant crystallography, cryo-EM and molecular dynamics data are available from the corresponding author upon request. The maps and the coordinates of the refined models have been deposited into the Protein Data Bank and the Electron Microscopy Data Bank (EMDB) under the following accession numbers: GltPh-XL1 (PDB: 6X01), GltPh-XL3 (PDB: 6WZB), GltPh-XL2 - iOFS (PDB: 6WYJ; EMDB: EMD-21966), GltPh-XL2 – ClCS (PDB: 6WYK; EMDB: EMD-21967), GltPh-XL2 trimer – iOFS (PDB: 6WYL; EMDB: EMD-21968).

References

  1. Vandenberg, R. J. & Ryan, R. M. Mechanisms of glutamate transport. Physiol. Rev. 93, 1621–1657 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ryan, R. M. & Vandenberg, R. J. Elevating the alternating-access model. Nat. Struct. Mol. Biol. 23, 187–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wadiche, J. I., Arriza, J. L., Amara, S. G. & Kavanaugh, M. P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ryan, R. M. & Mindell, J. A. The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 14, 365–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Wadiche, J. I., Amara, S. G. & Kavanaugh, M. P. Ion fluxes associated with excitatory amino acid transport. Neuron 15, 721–728 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Parinejad, N., Peco, E., Ferreira, T., Stacey, S. M. & van Meyel, D. J. Disruption of an EAAT-mediated chloride channel in a Drosophila model of ataxia. J. Neurosci. 36, 7640–7647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Winter, N., Kovermann, P. & Fahlke, C. A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain 135, 3416–3425 (2012).

    Article  PubMed  Google Scholar 

  11. Canul-Tec, J. C. et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544, 446–451 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garaeva, A. A. et al. Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat. Struct. Mol. Biol. 25, 515–521 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Garaeva, A. A., Guskov, A., Slotboom, D. J. & Paulino, C. A one-gate elevator mechanism for the human neutral amino acid transporter ASCT2. Nat. Commun. 10, 3427 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Yu, X. et al. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife 8, e48120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akyuz, N. et al. Transport domain unlocking sets the uptake rate of an aspartate transporter. Nature 518, 68–73 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. & Gouaux, E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445, 387–393 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Oh, S. & Boudker, O. Kinetic mechanism of coupled binding in sodium-aspartate symporter GltPh. eLife 7, e37291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reyes, N., Oh, S. & Boudker, O. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20, 634–640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scopelliti, A. J., Font, J., Vandenberg, R. J., Boudker, O. & Ryan, R. M. Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat. Commun. 9, 38 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Verdon, G. & Boudker, O. Crystal structure of an asymmetric trimer of a bacterial glutamate transporter homolog. Nat. Struct. Mol. Biol. 19, 355–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Verdon, G., Oh, S., Serio, R. N. & Boudker, O. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters. eLife 3, e02283 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Wang, X. & Boudker, O. Large domain movements through the lipid bilayer mediate substrate release and inhibition of glutamate transporters. eLife 9, e58417 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arkhipova, V. et al. Binding and transport of d-aspartate by the glutamate transporter homolog GltTk. eLife 8, e45286 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guskov, A., Jensen, S., Faustino, I., Marrink, S. J. & Slotboom, D. J. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk. Nat. Commun. 7, 13420 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arkhipova, V., Guskov, A. & Slotboom, D. J. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment. Nat. Commun. 11, 998 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan, Y. et al. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. Proc. Natl Acad. Sci. USA 114, 1584–1588 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erkens, G. B., Hänelt, I., Goudsmits, J. M., Slotboom, D. J. & van Oijen, A. M. Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119–123 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Cater, R. J., Vandenberg, R. J. & Ryan, R. M. The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation. Biophys. J. 107, 621–629 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cater, R. J., Vandenberg, R. J. & Ryan, R. M. Tuning the ion selectivity of glutamate transporter-associated uncoupled conductances. J. Gen. Physiol. 148, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hotzy, J., Schneider, N., Kovermann, P. & Fahlke, C. Mutating a conserved proline residue within the trimerization domain modifies Na+ binding to excitatory amino acid transporters and associated conformational changes. J. Biol. Chem. 288, 36492–36501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, S. & Vandenberg, R. J. Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel. Biochemistry 46, 9685–9692 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kovermann, P., Machtens, J. P., Ewers, D. & Fahlke, C. A conserved aspartate determines pore properties of anion channels associated with excitatory amino acid transporter 4 (EAAT4). J. Biol. Chem. 285, 23676–23686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, J. et al. Transient formation of water-conducting states in membrane transporters. Proc. Natl Acad. Sci. USA 110, 7696–7701 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryan, R. M., Mitrovic, A. D. & Vandenberg, R. J. The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J. Biol. Chem. 279, 20742–20751 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ryan, R. M., Compton, E. L. & Mindell, J. A. Functional characterization of a Na+-dependent aspartate transporter from Pyrococcus horikoshii. J. Biol. Chem. 284, 17540–17548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, M. H., Torres-Salazar, D., Gonzalez-Suarez, A. D., Amara, S. G. & Bahar, I. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters. eLife 6, e25850 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Machtens, J. P. et al. Mechanisms of anion conduction by coupled glutamate transporters. Cell 160, 542–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360, 376 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Iwadate, Y., Kawamura, K., Igarashi, K. & Mochinaga, J. Effective ionic radii of nitrite and thiocyanate estimated in terms of the Boettcher equation and the Lorentz–Lorenz equation. J. Phys. Chem. 86, 5205–5208 (1982).

    Article  CAS  Google Scholar 

  41. Wadiche, J. I. & Kavanaugh, M. P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seal, R. P. & Amara, S. G. A reentrant loop domain in the glutamate carrier EAAT1 participates in substrate binding and translocation. Neuron 21, 1487–1498 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Barish, M. E. A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. 342, 309–325 (1983).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vandenberg, R. J., Huang, S. & Ryan, R. M. Slips, leaks and channels in glutamate transporters. Channels (Austin) 2, 51–58 (2008).

    Article  Google Scholar 

  45. Veruki, M. L., Mørkve, S. H. & Hartveit, E. Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat. Neurosci. 9, 1388–1396 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Wersinger, E. et al. The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J. Physiol. 577, 221–234 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Untiet, V. et al. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation. Glia 65, 388–400 (2017).

    Article  PubMed  Google Scholar 

  48. Shabaneh, M., Rosental, N. & Kanner, B. I. Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance. J. Biol. Chem. 289, 11175–11182 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scopelliti, A. J., Heinzelmann, G., Kuyucak, S., Ryan, R. M. & Vandenberg, R. J. Na+ interactions with the neutral amino acid transporter ASCT1. J. Biol. Chem. 289, 17468–17479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zerangue, N. & Kavanaugh, M. P. ASCT-1 is a neutral amino acid exchanger with chloride channel activity. J. Biol. Chem. 271, 27991–27994 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, W. et al. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 8, e50576 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Matin, T. R., Heath, G. R., Huysmans, G. H. M., Boudker, O. & Scheuring, S. Millisecond dynamics of an unlabeled amino acid transporter. Nat. Commun. 11, 5016 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walter, J. D., Sawicka, M. & Dutzler, R. Cryo-EM structures and functional characterization of murine Slc26a9 reveal mechanism of uncoupled chloride transport. eLife 8, e46986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Galli, A., Blakely, R. D. & DeFelice, L. J. Norepinephrine transporters have channel modes of conduction. Proc. Natl Acad. Sci. USA 93, 8671–8676 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ingram, S. L., Prasad, B. M. & Amara, S. G. Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nat. Neurosci. 5, 971–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Vandenberg, R. J., Handford, C. A., Campbell, E. M., Ryan, R. M. & Yool, A. J. Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1. Biochem. J. 439, 333–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Basilio, D., Noack, K., Picollo, A. & Accardi, A. Conformational changes required for H+/Cl exchange mediated by a CLC transporter. Nat. Struct. Mol. Biol. 21, 456–463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aragão, D. et al. MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 25, 885–891 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  61. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  63. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D. 67, 235–242 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D. 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. The PyMOL Molecular Graphics System v.2.2.2 (Schrödinger, 2018).

  67. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Ritchie, T. K. et al. in Methods in Enzymology Vol. 464 (eds Düzgünes, N.) 211–231 (Academic, 2009).

  70. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Scheres, S. H. in Methods in Enzymology Vol. 579 (ed. Crowther, R. A.) 125–157 (Academic, 2016).

  74. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article  CAS  Google Scholar 

  76. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  77. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article  CAS  Google Scholar 

  78. Rostkowski, M., Olsson, M. H., Søndergaard, C. R. & Jensen, J. H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 11, 6 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8, 3257–3273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177 (1994).

    Article  ADS  CAS  Google Scholar 

  83. Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).

    Article  ADS  CAS  Google Scholar 

  84. Huang, Z. & Tajkhorshid, E. Identification of the third Na+ site and the sequence of extracellular binding events in the glutamate transporter. Biophys. J. 99, 1416–1425 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kästner, J. Umbrella sampling. WIREs Comput. Mol. Sci. 1, 932–942 (2011).

    Article  Google Scholar 

  86. Grossfield, A. WHAM: the weighted histogram analysis method v.2.0.10.2 http://membrane.urmc.rochester.edu/wordpress/?page_id=126.

  87. Poulsen, M. V. & Vandenberg, R. J. Niflumic acid modulates uncoupled substrate-gated conductances in the human glutamate transporter EAAT4. J. Physiol. 534, 159–167 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian National Health and Medical Research Council Project Grant APP1164494 (to R.M.R., R.J.V. and J.F.) and Fellowship APP1159347 (to A.G.S.), by National Institutes of Health grants P41-GM104601 (to E.T.) and R01-GM067887 (to E.T.), a Research Training Program Scholarship (to I.C.) and a Beckman Institute Graduate Fellowship (to S.P.). Computational resources were provided by XSEDE (grant MCA06N060 to E.T.), NCSA Blue Waters (to E.T.) and Microsoft Azure (to E.T.). We acknowledge the use of the Victor Chang Cardiac Research Institute Innovation Centre, funded by the NSW Government; the Electron Microscope Unit at UNSW Sydney, funded in part by the NSW Government; the MX2 beamline at the Australian Synchrotron, part of ANSTO; and the Australian Cancer Research Foundation (ACRF) detector. We acknowledge the facilities and technical assistance of J. Bouwer and S. Brown from Cryo Electron Microscopy - Molecular Horizons, University of Wollongong; and W. Close from Microscopy Australia at the Australian Centre for Microscopy and Microanalysis, University of Sydney. We thank D. Chappell, X. Wang and O. Boudker for discussions; Z. Zhao for assistance with simulations; and C. Handford and those that support the X. laevis colony at the University of Sydney.

Author information

Authors and Affiliations

Authors

Contributions

I.C., J.F., R.J.C. and R.M.R. designed and performed biochemistry and X-ray crystallography experiments. I.C., J.F., M.S. and A.G.S. designed and performed cryo-EM experiments. S.P. and E.T. designed the simulation experiments; S.P. performed and analysed the simulations. Q.W., R.J.C., R.J.V. and R.M.R. designed and performed functional experiments in oocytes. The manuscript was written by I.C., S.P., Q.W. and R.M.R. with input from all authors.

Corresponding authors

Correspondence to Emad Tajkhorshid, Josep Font or Renae M. Ryan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Aravind Penmatsa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Crosslinking experiments on purified GltPh double-cysteine transporters.

a, SDS–PAGE gel shift assay showing the extent of crosslinking in detergent-solubilized CLGltPh and the double-cysteine GltPh transporters under untreated conditions, upon mPEG5K-maleimide treatment, and after incubation with HgCl2; arrows indicate the positions of differentially crosslinked protomers and mPEG5K-bound proteins. Data are representative from one experiment that was replicated at least two times from two separate protein purifications. For gel source data, see Supplementary Fig. 1. b, Crystal structure of GltPh-XL1 (purple) and GltPh-XL3 (pink) superimposed on the OFS (PDB: 2NWX; left, grey) and the IFS (PDB: 3KBC; right, grey), respectively. c, SDS–PAGE analysis of purified GltPh-XL3 in nanodiscs. d, Cryo-EM structure of GltPh-XL2 (green) superimposed on the iOFS (PDB: 3V8G, chain C; grey).

Extended Data Fig. 2 Cryo-EM data processing protocol and refinement.

a, Data processing flow chart for GltPh reconstituted into nanodiscs in the presence of NaCl and aspartate. b, Fourier shell correlation curves indicating the resolution at the 0.143 threshold of final masked (blue) and unmasked (red) maps for GltPh trimer iOFS (left), GltPh protomer ClCS (middle) and GltPh protomer iOFS (right). c, Final maps after Relion post-processing, coloured according to local resolution estimation using Relion for GltPh trimer iOFS (left, 3.9Å resolution, contour level 7.2σ), GltPh protomer ClCS (middle, 4.0Å resolution, contour level 12.0σ) and GltPh protomer iOFS (right, 3.7Å resolution, contour level 9.5σ). Contour levels were calculated using Chimera.

Extended Data Fig. 3 The conformational space of a GltPh protomer.

a, b, Front (a) and top (b) views of the cryo-EM map and atomic model of GltPh-XL2 in the iOFS (contour level 9.5σ) and ClCS (contour level 12.0σ). Density attributed to the scaffold domain, transport domain and HP2 are shown in salmon, blue and red, respectively. c, Conformational changes undertaken by a GltPh protomer during the substrate-transport cycle viewed from the side and top. HP2 is coloured for easier visualization of the rotational changes observed in the transport domain. d, e, Close-up views of the L152C–G351C crosslink fitted in the iOFS (d) (contour level 12.9σ) and ClCS (e) (contour level 10.3σ) cryo-EM maps. Contour levels were calculated using Chimera.

Extended Data Fig. 4 Na+ coordination sites in the ClCS.

A close-up view of the three Na+ coordination sites on the ClCS protomer. Residues interacting with the Na+ ion (purple circle, modelled) are shown in stick representation. The scaffold and the transport domains are shown in salmon and blue, respectively, with the substrate in black sticks.

Extended Data Fig. 5 Nanodisc deformation supports transport-domain movement by the ClCS and putative lipid-binding sites.

a, Percentage of GltPh-XL2 trimers containing all three protomers in the iOFS, in the ClCS, or in a mixture of both states. Out of 220,938 trimers, 79,809 contained one or more protomers in the ClCS. Particle counting within symmetry-expanded data showed that 63,470 trimers contained one protomer in the ClCS, 14,394 trimers contained two protomers in the ClCS and 1,945 trimers contained all three protomers in the ClCS. b, Density map of GltPh-XL2 trimer (unfocused refinement) containing one ClCS protomer and embedded in nanodiscs (viewed from the membrane plane). The two iOFS protomers are shown in orange and the ClCS in blue. The nanodisc is shown in yellow. c, Putative lipid-binding sites in the GltPh-XL2 trimer, in which the transport domain is shown in blue and the scaffold domain in salmon. Identical lipid densities (green) were observed between protomers (contour level 7.2σ). Transmembrane helices located within 5 Å of the putative lipid densities are labelled. Contour levels were calculated using Chimera.

Extended Data Fig. 6 Water conduction through GltPh-ClCS and setup of umbrella sampling simulations and convergence to capture Cl movement through GltPh-ClCS.

a, The GltPh-ClCS structure was embedded into a lipid bilayer containing POPE, POPG and POPC lipids, mimicking experimental conditions. After an initial equilibration of 100 ns, the entire system was subjected to an external electric field of 800 mV, which resulted in a continuous water pathway through the interface of the scaffold and the transport domains. The GltPh-ClCS protomer is shown in cartoon representation, with the transport domain in blue and the scaffold domain in salmon. XL-2 residues L152 and G351 are shown in red and blue spheres, respectively. b, Residues lining the Cl pathway have a higher solvent accessible surface area (SASA) in the GltPh-ClCS than in the OFS (calculated using the crystal structure of OFS PDB: 2NWX). c, Overlap between the corresponding windows used in umbrella sampling simulations. d, No substantial changes between the free-energy profile obtained at 10 ns (red), 15 ns (blue) and 20 ns (green) were observed, highlighting the convergence of umbrella sampling simulations.

Extended Data Fig. 7 The EAAT1 open-channel conformation conducts Cl.

a, l-[3H]glutamate uptake into oocytes expressing cysteine-less EAAT1 and double cysteine transporter mutants in control conditions (grey), and after pre-incubation with DTT (cyan) or copper phenanthroline (orange). Number of cells (n) used for each condition is indicated in each graph and all measurements presented were taken across at least two batches of oocytes. be, l-Glutamate elicited current–voltage relationships for cysteine-less E1 (b), E1-XL1 (c), E1-XL2 (d) and E1-XL3 (e) monitored under the same conditions as a. f, g, To confirm that crosslinks E1-XL1, E1-XL2 and E1-XL3 were occurring within an individual protomer, rather than between protomers of the trimeric complex, oocytes expressing single cysteine residues that make up E1-XL1 (K300C and W473C), E1-XL2 (L244C and G439C), and E1-XL3 (K300C and A470C) either alone or co-injected into an individual oocyte were also examined using the same approaches as in a, be. Data are mean ± s.e.m. h, EAAT1 (PBD: 5LLU) highlighting residues forming the extracellular and intracellular hydrophobic gates. The scaffold domain is shown in grey and the transport domain in gold. The Cα atoms of the two introduced cysteine residues are shown as spheres (L244 in red and G439 in blue). i, Membrane reversal potentials (Erev) measured in oocytes expressing wild-type (n = 6) and mutant (n = 5) EAAT1 transporters. Each data point (white circle) represents a response from a single cell. The black bar represents mean ± s.e.m. Significance was determined using one-way ANOVA with Bonferroni post hoc analysis for multiple comparisons performed using GraphPad Prism 8; exact P values are provided. j, Schematic of the substrate-transport cycle. A single protomer is shown with the scaffold domain in salmon, the transport domain in blue and the substrate in black.

Extended Data Table 1 Data collection and refinement statistics
Extended Data Table 2 Cryo-EM data collection, refinement and validation statistics
Extended Data Table 3 Residues that interact with Cl in GltPh as captured with umbrella sampling simulations (and corresponding residues in EAAT1)

Supplementary information

Supplementary Figures

Supplementary Figure 1: Uncropped SDS-PAGE gels for Extended Data Fig. 1a and 1c.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, I., Pant, S., Wu, Q. et al. Glutamate transporters have a chloride channel with two hydrophobic gates. Nature 591, 327–331 (2021). https://doi.org/10.1038/s41586-021-03240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03240-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing