Skip to main content
Log in

Philosophy of Evolutionary Biology

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Cognition is not a process of mastering truths, i.e., grains of ultimate knowledge. Even in the details, cognition only allows us to get closer to the ultimate truth, not to reach it. Consequently, the real tool of knowledge is not a proof, but a presumption. The latter refers to a certain decision that was successfully established in the past in an appropriate context and therefore can be taken without additional proofs, though only in the absence of serious contradictory evidence. Two paradigms compete within the framework of modern evolutionary biology, i.e., the dominant cladistic paradigm and the often disregarded but indestructible phyletic paradigm, which grew from the traditional view on systematics and evolution. Cladistics corresponds to the genetic (=population-genetic, “synthetic”) theory of evolution, whereas phyletics corresponds to the holistic (=“epigenetic”) one. The cladistic paradigm seemingly offers a strict procedure of objective analysis, but its prerequisites, such as the mandatory dichotomy of a particular phylum combined with the simultaneous disappearance of an ancestor, which disregards the possibility of speciation without divergence, are hardly consistent with the real order of things, and unavoidable sources of subjectivity are also usually ignored. The holistic paradigm does not represent a less clear procedure, but a more complex protocol of analysis, since it not only recognizes the unavoidable elements of subjectivity but also explicitly introduces them into the research protocol as a choice between the conflicting presumptions. Phyletics, as part of the holistic paradigm, provides taxonomic and phylogenetic schemes that are stabler in the long run, and the holistic theory of evolution, together with the adaptive compromise metaphor derived from it, can explain many evolutionary phenomena that are incompatible with the genetic (“synthetic”) theory of evolution, such as the discrete nature of biological diversity, the fundamental nonuniformity of the evolutionary process, and the paradox of the inverse correlation between the evolutionary rate and level of organization, e.g., the highest and lowest rates of the evolution of large mammals and microorganisms, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Activities of the intersectional seminar on the problems of evolution from October 1965 to April 1966, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1967, vol. 72, no. 4, pp. 136–138.

  2. Aristotle, Parts of Animals, Harvard: Harvard Univ. Press, 1937.

  3. Beketov, A.N., Harmony in nature, Russ. Vestn., 1860, vol. 30, pp. 197–240, 534–558.

    Google Scholar 

  4. Belyaev, D.K., The problems in stabilizing and destabilizing selection, in Istoriya i teoriya evolyutsionnogo ucheniya (History and Theory of Evolutionary Doctrine), Leningrad: Nauka, 1974, no. 2, pp. 76–84.

  5. Carson, H.L.T., The genetics of speciation at the diploid level, Am. Nat., 1975, vol. 109, pp. 83–92.

    Article  Google Scholar 

  6. Darwin, C.R., On the Origin of Species by Means of Natural Selection, London: Murray, 1859.

    Google Scholar 

  7. Eldredge, N. and Gould, S.J., Punctuated equilibria: an alternative to phyletic gradualism, in Models in Paleobiology, Schopf, T.J.M., Ed., San Francisco: Freeman & Cooper, 1972, pp. 82–115.

    Google Scholar 

  8. Farrer, D.R., Species and evolution in asexually reproducing independent fern gametophytes, Syst. Bot., 1990, vol. 15, pp. 98–111.

    Article  Google Scholar 

  9. Feder, J.L. and Forbes, A.A., Sequential speciation and the diversity of parasitic insects, Ecol. Entomol., 2010, vol. 35, suppl. 1, pp. 67–76.

    Article  Google Scholar 

  10. Ghiselin, M.T., A radical solution of the species problem, Syst. Zool., 1974, vol. 23, pp. 536–544.

    Article  Google Scholar 

  11. Ghiselin, M.T., Species concepts, individuality and objectivity, Biol. Philos., 1987, vol. 2, no. 2, pp. 127–143.

    Article  Google Scholar 

  12. Gidley, J.W., The Lagomorpha, an independent order, Science, 1912, vol. 36, pp. 285–286.

    Article  CAS  PubMed  Google Scholar 

  13. Glickman, S.E., Cunha, G.R., Drea, C.M., Conley, A.J., and Place, N.J., Mammalian sexual differentiation: Lessons from the spotted hyena, Trends Endocrinol. Metabol., 2006, vol. 17, no. 9, pp. 349–356.

    Article  CAS  Google Scholar 

  14. Gould, S.J. and Eldredge, N., Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobiology, 1977, vol. 3, pp. 115–151.

    Article  Google Scholar 

  15. Gressit, J.L., Evolution of endemic Hawaiian cerambycid beetles, Pac. Insects, 1978, vol. 18, pp. 137–167.

    Google Scholar 

  16. Gritsenko, V.V., Kreslavskii, A.G., Mikheev, A.V., Severtsev, A.S., and Solomatin, V.M., Kontseptsii vida i simpatricheskoe vidoobrazovanie (The Concept of a Species and Sympatric Speciation), Moscow: Mosk. Gos. Univ., 1983.

  17. Grodnitskii, D.L., Dve teorii biologicheskoi evolyutsii (Two Theories of Biological Evolution), Krasnoyarsk: Inst. Lesa im. V.N. Sukacheva, Sib. Otd., Ross. Akad. Nauk, 2000.

  18. Grodnitskii, D.L., Dve teorii biologicheskoi evolyutsii (Two Theories of Biological Evolution), Saratov: Nauchnaya Kniga, 2002, 2nd ed.

  19. Hennig, W., Grundzüge einer Theorie der Phylogenetischen Systematik, Berlin: Deutsch. Zentralverlag, 1950.

    Google Scholar 

  20. Hennig, W., Phylogenetic Systematics, Urbana: Illinois Univ. Press, 1966.

    Google Scholar 

  21. Heraty, J., Ronquist, F., Carpenter, J.M., Hawks, D., Schulmeister, S., et al., Evolution of the hymenopteran megaradiation, Mol. Phylogenet. Evol., 2011, vol. 60, pp. 73–88.

    Article  PubMed  Google Scholar 

  22. History of Insects, Rasnitsyn, A.P. and Quicke, D.L.J., Eds., Dordrecht: Kluwer, 2002.

    Google Scholar 

  23. International Code of Botanical Nomenclature: Adopted by the Twelfth International Botanical Congress, Leningrad, July 1975, Regnum Vegetabile Series vol. 97, Utrecht: Bohnm Schelteme and Holkema, 1978.

  24. International Code of Zoological Nomenclature, London: Int. Trust Zool. Nomencl., 1985, 3rd ed.

  25. International Code of Zoological Nomenclature, London: Int. Trust Zool. Nomencl., 1999, 4th ed.

  26. Ivanova, L.S., Comparison of parthenogenetic weevils (Coleoptera, Curculionidae) in Siberia, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk: Biol. Inst., Sib. Branch, Acad. Sci. USSR, 1978.

  27. Kjer, K.M., Simon, C., Yavorskaya, M., and Beutel, R.G., Progress, pitfalls and parallel universes: a history of insect phylogenetics, J. R. Soc. Interface., 2016, vol. 13, no. 121, pp. 1–29.

    Article  Google Scholar 

  28. Klopfstein, S., Vilhelmsen, L., Heraty, J.M., Sharkey, M., and Ronquist, F., The hymenopteran tree of life: evidence from protein-coding genes and objectively aligned ribosomal data, PLoS One, 2013, vol. 8, no. 8, p. e69344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klyuge, N.Yu., Sovremennaya sistematika nasekomykh. Chast’ 1. Printsipy sistematiki zhivykh orgnaizmov i obshchaya sistema nasekomykh s klassifikatsiei pervichnobeskrylykh i drevnekrylykh (Modern Systematics of Insects, Part 1: Principles of Systematics of Living Organisms and the General System of Insects with Classification of Primary Wingless and Paleopterous Insects), St. Petersburg: Lan’, 2000.

  30. Krasilov, V.A., Phylogenetics and systematics, Materialy simpoziuma “Problemy filogenii i sistematiki” (Proc. Symp. “Problems of Phylogeny and Systematics”), Vladivostok, 1969, pp. 12–30.

  31. Krassilov, V.A., Angiosperm Origins: Morphological and Ecological Aspects, Sofia: Pensoft, 1997.

    Google Scholar 

  32. Krassilov, V.A., Character parallelism and reticulation in the origin of angiosperms, in Horizontal Gene Transfer, Syvanen, M. and Kado, C.I., Eds., San Diego: Academic, 2002, 2nd ed.

    Google Scholar 

  33. Kuhn, T.S., The Structure of Scientific Revolutions, Chicago: Univ. Chicago Press, 1970, 2nd ed.

    Google Scholar 

  34. Lakatos, I., The Methodology of Scientific Research Programmes, Philos. Pap. vol. 1, Cambridge: Cambridge Univ. Press, 1978.

  35. Laurin, B. and Bruno, D., L’évolution morphologique: un compromis entre contraintes du dévelopment et ajustements adaptif, C. R. Acad. Sci. Ser. 2., 1988, vol. 307, pp. 843–849.

    Google Scholar 

  36. Letsch, H.O., Meusemann K., Wipfler, B., Schütte, K., Beutel, R., and Misof, B., Insect phylogenomics: results, problems and the impact of matrix composition, Proc. R. Soc. B, 2012, vol. 279, pp. 3282–3290.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Linnaeus, C., Philosophia Botanica: In Qua Explicantur Fundamenta Botanica Cum Definitionibus Partium, Exemplis Terminorum, Observationibus Rariorum, Adjectis Figuris Aeneis, Stockholm: G. Kiesewetter, 1751.

    Google Scholar 

  38. Lyubishchev, A.A., On the structure of natural system of organisms, Izv. Biol. Inst., Perm. Univ., 1923, vol. 2, no. 3, pp. 99–110.

    Google Scholar 

  39. Lyubishchev, A.A., Systematics and evolution, Trudy Vsesoyuznogo soveshchaniya “Vnutrevidovaya izmenchivost’ nazemnykh pozvonochnykh zhivotnykh i mikroevolyutsiya” (Proc. All-Union Conf. “Intraspecific Variability of Terrestrial Vertebrates and Microevolution”), Sverdlovsk: Ural. Nauchn. Tsentr, Akad. Nauk SSSR, 1966, pp. 54–57.

  40. Lyubishchev, A.A., Problemy formy, sistematiki i evolyutsii organizmov (Shapes, Systematics, and Evolution of Organisms), Moscow: Nauka, 1982.

  41. Mamkaev, Yu.V., Comparison of morphological differences in the lower and higher groups of the same phylogenetic stem, Zh. Obshch. Biol., 1968, vol. 29, pp. 48–55.

    PubMed  Google Scholar 

  42. Mao, M., Gibson, T., and Dowton, M., Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes, Mol. Phylogenet. Evol., 2015, vol. 84, pp. 34–43.

    Article  CAS  PubMed  Google Scholar 

  43. Mayr, E., Populations, Species, and Evolution: An Abridgment of Animal Species and Evolution, Harvard: Harvard Univ. Press, 1970.

  44. McCune, A.R., Evolutionary novelty and atavism in the Semionotus complex: relaxed selection during colonization of an expanding lake, Evolution, 1990, vol. 44, pp. 71–85.

    Article  PubMed  Google Scholar 

  45. Meyen, S.V., Geography of macroevolution of the plants, Zh. Obshch. Biol., 1987, vol. 48, pp. 291–309.

    Google Scholar 

  46. Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., et al., Phylogenomics resolves the timing and pattern of insect evolution, Science, 2014, vol. 346, pp. 763–767.

    Article  CAS  PubMed  Google Scholar 

  47. Nevesskaja, L.A., History of the genus Didacna (Bivalvia: Cardiidae), Paleontol. J., 2007, vol. 41, suppl. 9, pp. 861–949.

    Article  Google Scholar 

  48. Nevesskaja, L.L., Goncharova, I.A., Il’ina, L.B., Paramonova, N.P., Popov, S.V., et al., History of the Neogene molluscs of Paratethys, Tr. Paleontol Inst., Akad. Nauk SSSR, 1986, vol. 220.

    Google Scholar 

  49. Nevesskaja, L.A., Paramonova, N.P., and Popov, S.V., History of Lymnocardiinae (Bivalvia, Cardiidae), Paleontol. J., 2001, vol. 35, suppl. 3, pp. 147–217.

    Google Scholar 

  50. Nevesskaja, L.L., Goncharova, I.A., Il’ina, L.B., and Popov, S.V., Evolutionary transformations of malacofauna in the Neogene basins of Paratethys as an example of the development of island-type ecosystems, Zh. Obshch. Biol., 2009, vol. 70, no. 5, pp. 396–414.

    Google Scholar 

  51. Payne, A., Barden, P.M., Wheeler, W.C., and Carpenter, J.M., Direct optimization, sensitivity analysis, and the evolution of the hymenopteran superfamilies, Am. Mus. Novit., 2013, vol. 3789, pp. 1–19.

    Article  Google Scholar 

  52. Peters, R.S., Krogmann, L., Mayer, Ch., Donath, A., Gunkel, S., et al., Evolutionary history of the hymenoptera, Curr. Biol., 2017, vol. 27, no. 7, pp. 1–6.

    Article  CAS  Google Scholar 

  53. Plejel, F. and Rose, G.W., Ceci n’est pas une pipe: names, clades and phylogenetic nomenclature, J. Zool. Syst. Evol. Res., 2002, vol. 41, pp. 162–174.

    Article  Google Scholar 

  54. Poljansky, G.I., Some aspects of the species in asexually reproducing Protozoa, Protozoology, 1977, vol. 3, pp. 17–23.

    Google Scholar 

  55. Polyanskii, V.I., Species of lower algae, in Komarovskie chteniya (Komarov’s Readings), Moscow: Akad. Nauk SSSR, 1956.

  56. Polyanskii, Yu.I., Intraspecific differentiation and the structure of plant species, Vestn. Leningr. Gos. Univ., 1957, no. 21, pp. 45–64.

  57. Ponomarenko, A.G. and Rasnitsyn, A.P., Phenetic and phylogenetic systems, Zool. Zh., 1971, vol. 50, no. 1, pp. 5–14.

    Google Scholar 

  58. Popper, K., The Logic of Scientific Discovery, London: Routledge, 2002.

    Google Scholar 

  59. Rasnitsyn, A.P., The origin and evolution of lower Hymenoptera, Tr. Paleontol Inst., Akad. Nauk SSSR, 1969, vol. 123.

    Google Scholar 

  60. Rasnitsyn, A.P., Tахonomic analysis and other taxometric methods, Zh. Obshch. Biol., 1972, vol. 33, pp. 60–76.

    CAS  PubMed  Google Scholar 

  61. Rasnitsyn, A.P., The origin and evolution of Hymenoptera insects, Tr. Paleontol Inst., Akad. Nauk SSSR, 1980, vol. 174.

    Google Scholar 

  62. Rasnitsyn, A.P., Parataxon and paranomenclature, Paleontol. Zh., 1986a, no. 3, pp. 11–21.

  63. Rasnitsyn, A.P., Inadaptation and evadaptation, Paleontol. Zh., 1986b, no. 1, pp. 3–7.

  64. Rasnitsyn, A.P., Temps of evolution and theory of evolution (hypothesis of adaptive compromise), in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Moscow: Nauka, 1987, pp. 46–64.

  65. Rasnitsyn, A.P., Phylogenetics, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988a, vol. 1, pp. 480–497.

  66. Rasnitsyn, A.P., An outline of evolution of the hymenopterous insects (order Vespida), Orient. Insects, 1988b, vol. 22, pp. 115–145.

    Article  Google Scholar 

  67. Rasnitsyn, A.P., Principles of nomenclature and the nature of the taxon, Zh. Obshch. Biol., 1992, vol. 53, no. 3, pp. 307–313.

    Google Scholar 

  68. Rasnitsyn, A.P., Conceptual issues in phylogeny, taxonomy, and nomenclature, Contrib. Zool., 1996, vol. 66, no. 1, pp. 3–41.

    Google Scholar 

  69. Rasnitsyn, A.P., Evolutionary process and taxonomy methods, Tr. Russ. Entomol. O-va, 2002, vol. 73.

    Google Scholar 

  70. Rasnitsyn, A.P., Ontology of evolution and methodology of taxonomy, Paleontol. J., 2006, vol. 40, suppl. 6, pp. 679–737.

    Article  Google Scholar 

  71. Rasnitsyn, A.P., Molecular phylogenetics, morphological cladistics, and fossil record, Entomol. Rev., 2010, vol. 90, no. 3, pp. 263–298.

    Article  Google Scholar 

  72. Rasnitsyn, A.P., When life never thought of dying, Priroda (Moscow), 2012, no. 9, pp. 39–48.

  73. Rasnitsyn, A.P., Classification methods: approaches of Procrustes, Plato, and Linnaeus, Tr. Zool. Inst., Ross. Akad. Nauk, 2013a, no. 2, pp. 66–71.

  74. Rasnitsyn, A.P., Folk and scientific systematics, Priroda (Moscow), 2013b, no. 4, pp. 86–90.

  75. Rasnitsyn, A.P., Aristov, D.S., and Rasnitsyn, D.A., Insects of the Permian and Early Triassic (Urzhumian–Olenekian ages) and the problem of the Permian–Triassic biodiversity crisis, Paleontol. J., 2013c, vol. 47, no. 7, pp. 793–823.

    Google Scholar 

  76. Rasnitsyn, A.P., Aristov, D.S., and Rasnitsyn, D.A., Dynamics of insect diversity during the Early and Middle Permian, Paleontol. J., 2015, vol. 49, no. 12, pp. 1282–1309.

    Article  Google Scholar 

  77. Rasnitsyn, A.P., Bashkuev, A.S., Kopylov, D.S., Lukashevich, E.D., Ponomarenko, A.G., et al., Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins), Cretaceous Res., 2016, vol. 61, pp. 234–255.

    Article  Google Scholar 

  78. Rausch, R.L., Cestodes in mammals: the zoogeography of some parasite-host assemblages, Mém. Mus. Nat. Hist. Nat. Ser. A, 1982, vol. 123, pp. 179–183.

    Google Scholar 

  79. Rautian, A.S., The nature of genotype and inheritance, Zh. Obshch. Biol., 1993, vol. 52, no. 2, pp. 132–149.

    Google Scholar 

  80. Rotondo, G.M., Springer, V.G., Scott, G.A.J., and Schlanger, S.O., Plate movement and island integration—a possible mechanism in the formation of endemic biotas, with special reference to the Hawaiian Islands, Syst. Zool., 1981, vol. 30, pp. 12–21.

    Article  Google Scholar 

  81. Schmalhausen, I.I., Factors of Evolution: The Theory of Stabilizing Selection, Chicago: Univ. of Chicago Press, 1987.

    Google Scholar 

  82. Schram, F.R., Method and madness in phylogeny, in Crustacean Phylogeny, Schram, F.R., Ed., Rotterdam: Balkema, 1983, pp. 331–350.

    Google Scholar 

  83. Sharkey, M.J., Carpenter, J.M., Vilhelmsen, L., Heraty, J., Liljeblad, J., et al., Phylogenetic relationships among superfamilies of Hymenoptera, Cladistics, 2012, vol. 28, pp. 80–112.

    Article  PubMed  Google Scholar 

  84. Sharp, D., Insects, in The Cambridge Natural History, London: Macmillan, 1901, vol. 6.

    Google Scholar 

  85. Shishkin, M.A., Individual development and natural selection, Ontogenez, 1984, vol. 15, no. 2, pp. 115–136.

    Google Scholar 

  86. Shishkin, M.A., Individual development and the theory of evolution, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Moscow: Nauka, Moscow: Nauka, 1987, pp. 76–124.

  87. Shishkin, M.A., Evolution as an epigenetic process, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988a, vol. 1, pp. 142–169.

  88. Shishkin, M.A., Patterns of evolution of ontogenesis, in Sovremennaya paleontologiya (Modern Paleontology), Moscow: Nedra, 1988b, vol. 1, pp. 169–209.

  89. Shishkin, M.A., Development and lessons of evolutionism, Russ. J. Dev. Biol., 2006, vol. 37, no. 3, pp. 146–162.

    Article  Google Scholar 

  90. Shishkin, M.A., Evolutionary theory and scientific thinking, Paleontol. J., 2010, vol. 44, no. 6, pp. 601–613.

    Article  Google Scholar 

  91. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Pattern of Evolution), Moscow: Nauka, 1980.

  92. Shvarts, E.A., Sokhranenie bioraznoobraziya: soobshchestva i ekosistemy (Conservation of Biodiversity: Communities and Ecosystems), Moscow: KMK, 2004.

  93. Silvestro, D., Warnock, R.C.M., Gavryushkina, A., and Stadler, T., Closing the gap between palaeontological and neontological speciation and extinction rate estimates, Nat. Commun., 2018, vol. 9, p. 5237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  95. Smuts, J.C., Holism and Evolution, Cape Town: N&S Press, 1987.

    Google Scholar 

  96. Stanley, S.M., A theory of evolution above the species level, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, pp. 646–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stoeckle, M.Y. and Thaler, D.S., Why should mitochondria define species?, Hum. Evol., 2018, vol. 33, pp. 1–30.

    Google Scholar 

  98. Sundberg, P. and Pleijel, F., Phylogenetic classification and the definition of taxon names, Zool. Scr., 1994, vol. 23, no. 1, pp. 19–25.

    Article  Google Scholar 

  99. Suno-Uchi, N., Sasaki, F., Chiba, S., and Kawata, M., Morphological stasis and phylogenetic relationships in tadpole shrimps, Triops (Crustacea: Notostraca), Biol. J. Linn. Soc., 1997, vol. 61, no. 4, pp. 439–457.

    Google Scholar 

  100. Tasch, P., Branchiopoda, in Treatise on Invertebrate Paleontology, Part R: Arthropoda, Lawrence, KS: Univ. of Kansas Press, 1969, vol. 4, pp. 128–191.

  101. Vakhrameev, V.A. and Kotova, I.Z., The ancient angiosperms and related plants from the Lower Cretaceous of Transbaikalia, Paleontol. Zh., 1977, no. 4, pp. 101–109.

  102. Valen van, L., Integration of species: stasis and biogeography, Evol. Theory, 1982, vol. 6, pp. 99–112.

    Google Scholar 

  103. Weismann, A., Lektsii po evolyutsionnoi teorii (Lectures on the theory of Evolution), Moscow: Izd. M. i S. Sabashnikovykh, 1905, vol. 1.

  104. Wang, Y.-H., Engel, M.S., Rafael, J.A., Wu, H.-Y., Rédei, D., et al., Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda), Sci. Rep., 2016, vol. 6, p. 38939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilson, R.W., Rodent origin, in Papers on Fossil Rodents: In Honor of Albert Elmer Wood, Black, C.C. and Dawson, M.R., Eds., Nat. Hist. Mus. Los Angeles Sci. Ser. 33, Los Angeles: Nat. Hist. Mus. Los Angeles Cty., 1989, pp. 3–6.

  106. Woese, C.R., Microevolution in the microscopic world, in Molecules and Morphology in Evolution: Conflict or Compromise?, Patterson, C., Ed., Cambridge: Cambridge Univ. Press, 1987, pp. 177–202.

    Google Scholar 

  107. Zavarzin, G.A., Specific evolution of prokaryotes, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Tatarinov, L.P. and Rasnitsyn, A.P., Eds., Moscow: Nauka, 1987, pp. 144–158.

  108. Zherikhin, V.V., Biocenotic regulation of evolution, Paleontol. Zh., 1987, no. 1, pp. 3–12.

  109. Zherikhin, V.V., Cladistics in palaeontology: problems and constraints, Proc. I Int. Palaeoentomol. Conf. Moscow, 1998, Bratislava: AMBA Projects Int., 1999, pp. 193–199.

  110. Zherikhin, V.V., Insect trace fossils, in History of Insects, Rasnitsyn, A.P. and Quicke, D.L.J., Eds., Dordrecht: Kluwer, 2002, pp. 303–324.

    Google Scholar 

  111. Zherikhin, V.V. and Rasnitsyn, A.P., Biocenotic regulation of evolution, Materialy simpoziuma “Mikro- i makroevolyutsiya,” 2–5 sentyabrya 1980 g. (Proc. Symp. “Micro- and Macroevolution,” September 2–5, 1980), Tartu, 1980, pp. 77–81.

  112. Zherikhin, V.V., Ponomarenko, A.G., and Rasnitsyn, A.P., Vvedenie v paleoentomologiyu (Introduction into Paleoenthomology), Moscow: KMK, 2008.

Download references

ACKNOWLEDGMENTS

I would like to take this opportunity to express my sincere gratitude to V.E. Gokhman (Moscow State University, Moscow) for the editing of the text and for valuable advice and A.V. Khramov and Lukashevich (Paleontological Institute, Moscow, Russia) for discussion and healp in reading manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Rasnitsyn.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasnitsyn, A.P. Philosophy of Evolutionary Biology. Biol Bull Rev 11, 1–26 (2021). https://doi.org/10.1134/S2079086421010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421010060

Navigation