Skip to main content
Log in

Influence of Nanoscale Parameters on Solid–Solid Phase Transformation in Octogen Crystal: Multiple Solution and Temperature Effect

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

In this study, the influence of two nanoscale parameters (e.g., ratios of energy and width of two different interfaces) and temperature have been investigated which drastically affect the formation of interfacial melt during solid–solid phase transformations in energetic Octogen crystal. For different critical values of these parameters and depending on the energy barrier of the solid–melt interface, the appearance of propagating interfacial melt can be either continuous-reversible without the hysteresis or jump-like first-order discontinuous transformation with hysteresis. It is found that these nanoscale parameters significantly affect the phase transformation mechanism, induce different scale effects, and change the nanoscale behavior of octogen crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Q. Chen, Ann. Rev. Mater. Res. 32, 113 (2002).

    Article  Google Scholar 

  2. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Article  ADS  Google Scholar 

  3. A. Artemev, Y. Jin, and A. G. Khachaturyan, Acta Mater. 49, 1165 (2001).

    Article  ADS  Google Scholar 

  4. A. Basak and V. I. Levitas, Acta Mater. 139, 174 (2017).

    Article  ADS  Google Scholar 

  5. V. I. Levitas, A. M. Roy, and D. L. Preston, Phys. Rev. B 88, 054113 (2013).

    Article  ADS  Google Scholar 

  6. A. M. Roy, JETP Lett. 112, 173 (2020).

    Article  ADS  Google Scholar 

  7. A. M. Roy, Appl. Phys. A 126, 576 (2020).

    Article  ADS  Google Scholar 

  8. V. I. Levitas and M. Javanbakht, Phys. Rev. B 86, 140101 (2012).

    Article  ADS  Google Scholar 

  9. A. Basak and V. I. Levitas, Appl. Phys. Lett. 112, 201602 (2018).

    Article  ADS  Google Scholar 

  10. V. I. Levitas and K. Samani, Phys. Rev. B 89, 075427 (2014).

    Article  ADS  Google Scholar 

  11. V. I. Levitas, Scr. Mater. 149, 155 (2018).

    Article  Google Scholar 

  12. V. I. Levitas and K. Samani, Nat. Commun. 2, 1 (2011).

    Article  Google Scholar 

  13. V. I. Levitas and M. Javanbakht, Phys. Rev. Lett. 107, 175701 (2011).

    Article  ADS  Google Scholar 

  14. A. Basak and V. I. Levitas, J. Mech. Phys. Solids 113, 162 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. A. Caldwell, R. D. Jeyasingh, H. P. Wong, and D. J. Milliron, Nanoscale 4, 4382 (2012).

    Article  ADS  Google Scholar 

  16. S. Sinha-Ray, R. P. Sahu, and A. L. Yarin, Soft Matter 7, 8823 (2011).

    Article  ADS  Google Scholar 

  17. V. I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Phys. Rev. B 85, 220104(R) (2012).

  18. V. I. Levitas, Phil. Trans. R. Soc. London, Ser. A 371, 20120215 (2013).

    ADS  Google Scholar 

  19. V. I. Levitas, B. F. Henson, L. B. Smilowitz, D. K. Zer-kle, and B. W. Asay, J. Appl. Phys. 102, 113502 (2007).

    Article  ADS  Google Scholar 

  20. V. I. Levitas, B. F. Henson, L. B. Smilowitz, and B. W. Asay, Phys. Rev. Lett. 92, 235702 (2004).

    Article  ADS  Google Scholar 

  21. V. I. Levitas, B. F. Henson, L. B. Smilowitz, and B. W. Asay, Phys. Chem. B 20, 10105 (2006).

    Article  Google Scholar 

  22. B. F. Henson, L. B. Smilowitz, B. W. Asay, and P. M. Dickson, J. Chem. Phys. 117, 3780 (2002).

    Article  ADS  Google Scholar 

  23. L. B. Smilowitz, B. F. Henson, B. W. Asay, and P. M. Dickson, J. Chem. Phys. 117, 3789 (2002).

    Article  ADS  Google Scholar 

  24. P. Bowlan, B. F. Henson, L. B. Smilowitz, V. I. Levitas, N. Suvorova, and D. Oschwald, J. Chem. Phys. 150, 064705 (2019).

    Article  ADS  Google Scholar 

  25. S. L. Randzio and A. J. Kutner, Phys. Chem. B 112, 1435 (2008).

    Article  Google Scholar 

  26. V. I. Levitas, Phys. Rev. Lett. 95, 075701 (2005).

    Article  ADS  Google Scholar 

  27. V. I. Levitas and R. Ravelo, Proc. Natl. Acad. Sci. U.S.A. 109, 13204 (2012).

    Article  ADS  Google Scholar 

  28. P. Ball, Nat. Mater. 11, 747 (2012).

    Article  ADS  Google Scholar 

  29. Y. Peng, F. Wang, Z. Wang, A. M. Alsayed, Z. Zhang, A. G. Yodh, and Y. Han, Nat. Mater. 14, 101 (2015).

    Article  ADS  Google Scholar 

  30. V. I. Levitas and A. M. Roy, Acta Mater. 105, 244 (2016).

    Article  ADS  Google Scholar 

  31. A. M. Roy, J. Appl. Phys. 129, 025103 (2021). https://doi.org/10.1063/5.0025867

    Article  ADS  Google Scholar 

  32. A. M. Roy, Materialia 15, 101000 (2021). https://doi.org/10.1016/j.mtla.2021.101000

    Article  Google Scholar 

  33. A. M. Roy, Physica B: Condensed Matter 613, 412986 (2021). https://doi.org/10.1016/j.physb.2021.412986

    Article  Google Scholar 

  34. T. D. Sewell, R. Menikoff, D. Bedrov, and G. D. Smith, J. Chem. Phys. 119, 7417 (2003).

    Article  ADS  Google Scholar 

  35. M. J. Grinfield, Thermodynamic Methods in the Theory of Heterogeneous Systems (Longman Sci. Tech., London, 1991).

    Google Scholar 

  36. J. Luo, CRC Crit. Rev. Solid State 32, 67 (2007).

    Article  Google Scholar 

  37. J. Luo and Y.-M. Chiang, Ann. Rev. Mater. Res. 38, 227 (2008).

    Article  ADS  Google Scholar 

  38. M. Baram, D. Chatain, and W. D. Kaplan, Science (Washington, DC, U. S.) 332, 206 (2011).

    Article  ADS  Google Scholar 

  39. M. Tang, W. C. Carter, and R. M. Canon, Phys. Rev. B 73, 024102 (2006).

    Article  ADS  Google Scholar 

  40. T. W. Heo, S. Bhattacharyya, and L.-Q. Chen, Acta Mater. 59, 7800 (2011).

    Article  ADS  Google Scholar 

  41. J. Mellenthin, A. Karma, and M. Plapp, Phys. Rev. B 78, 184110 (2008).

    Article  ADS  Google Scholar 

  42. V. I. Levitas, Int. J. Plast., 102914 (2020). https://doi.org/10.1016/j.ijplas.2020.102914

  43. V. I. Levitas and K. Samani, Phys. Rev. B 84, 140103 (2011).

    Article  ADS  Google Scholar 

  44. V. I. Levitas and A. M. Roy, Phys. Rev. B 91, 174109 (2015).

    Article  ADS  Google Scholar 

  45. A. M. Roy, Mater. Sci. Res. 17, 3 (2020). https://doi.org/10.13005/msri.17.special-issue1.02

  46. A. M. Roy, Doctoral Dissertation (Iowa State Univ., Ames, 2015). https://doi.org/10.31274/etd-180810-4187

  47. E. Solomon, A. Natarajan, A. M. Roy, V. Sundararaghavan, A. van der Ven, and E. Marquis, Acta Mater. 166, 148 (2019).

    Article  ADS  Google Scholar 

  48. A. M. Roy, Eng. 2, 69 (2021). https://doi.org/10.3390/eng2010006

Download references

ACKNOWLEDGMENTS

I am grateful to Dr. V.I. Levitas (Iowa State University) for his kind guidance and discussion.

Funding

This work was supported by the LANL (contract no. 104321) and the U.S. National Science Foundation (grant no. CMMI-0969143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Roy.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A.M. Influence of Nanoscale Parameters on Solid–Solid Phase Transformation in Octogen Crystal: Multiple Solution and Temperature Effect. Jetp Lett. 113, 265–272 (2021). https://doi.org/10.1134/S0021364021040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021040032

Navigation