Skip to main content
Log in

Holographic Model of Exciton Condensation in a Double Monolayer Dirac Semimetal

  • METHODS OF THEORETICAL PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

In this paper we consider holographic model of exciton condensation in double monolayer Dirac semimetal. Exciton is a bound state of an electron and a hole. Being Bose particles, excitons can form a Bose–Einstein condensate. We study formation of two types of condensates. In first case both the electron and the hole forming the exciton are in the same layer (intralayer condensate), in the second case the electron and the hole are in different layers (interlayer condensate). We study how the condensates depend on the distance between layers and the mass of the quasiparticles in presence of a strong magnetic field. In order to take into account possible strong Coulomb interaction between electrons we use holographic approach. The holographic model consists of two \(D5\) branes embedded into anti de Sitter space. The condensates are described by geometric configuration of the branes. We show that the distance between layers at which interlayer condensate disappears decreases with quasiparticle mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. O. L. Berman, R. Ya. Kezerashvili, and Yu. E. Lozovik, Nanotechnology 21, 134019 (2010).

    Article  ADS  Google Scholar 

  2. C. H. Zhang and Y. N. Joglekar, Phys. Rev. B 77, 233405 (2008).

    Article  ADS  Google Scholar 

  3. K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald, L. Zheng, D. Yoshioka, and Sh.-Ch. Zhang, Phys. Rev. B 51, 5138 (1994).

    Article  ADS  Google Scholar 

  4. G. W. Semenoff, Phys. Scr. 146, 014016 (2012).

    Article  Google Scholar 

  5. L. V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 (1998).

    Article  ADS  Google Scholar 

  6. A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov, A. V. Kavokin, K. L. Campman, and A. C. Gossard, Nature (London, U.K.) 483, 584 (2012).

    Article  ADS  Google Scholar 

  7. D. Nandi, A. D. K. Finck, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Nature (London, U.K.) 488, 481 (2012).

    Article  ADS  Google Scholar 

  8. G. Cocco, E. Cadelano, and L. Colombo, Phys. Rev. B 81, 241412(R) (2010).

  9. B. Debnath, Y. Barlas, D. Wickramaratne, M. R. Neupane, and R. K. Lake, Phys. Rev. B 96, 174504 (2017).

    Article  ADS  Google Scholar 

  10. S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (MIT Press, Cambridge, MA, 2018).

    MATH  Google Scholar 

  11. G. Grignani, N. Kim, A. Marini, and G. W. Semenoff, J. High Energy Phys., No. 12, 091 (2014).

  12. G. Grignani, A. Marini, A. Pigna, and G. W. Semenoff, J. High Energy Phys., No. 06, 141 (2016).

  13. G. Grignani, N. Kim, A. Marini, A.-C. Pigna, and G. W. Semenoff, Phys. Lett. B 750, 22 (2015).

    Article  ADS  Google Scholar 

  14. G. Grignani, N. Kim, and G. W. Semenoff, Phys. Lett. B 722, 360 (2013).

    Article  ADS  Google Scholar 

  15. E. Gubankova, M. Cubrovic, and J. Zaanen, Phys. Rev. D 92, 086004 (2015).

    Article  ADS  Google Scholar 

  16. V. G. Filev, M. Ihl, and D. Zoakos, J. High Energy Phys., No. 07, 043 (2014).

  17. N. Evans, A. Gebauer, K. Kim, and M. Magou, Phys. Lett. B 698, 91 (2011).

    Article  ADS  Google Scholar 

  18. N. Evans and K. Kim, Phys. Lett. B 728, 658 (2014).

    Article  ADS  Google Scholar 

  19. Z. Wang, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan, and K. F. Mak, Nature (London, U.K.) 574, 76 (2019).

    Article  ADS  Google Scholar 

  20. Z. F. Ezawa and K. Hasebe, Phys. Rev. B 65, 075311 (2002).

    Article  ADS  Google Scholar 

  21. H. Min, R. Bistritzer, J. Su, and A. H. MacDonald, Phys. Rev. B 78, 121401 (2008).

    Article  ADS  Google Scholar 

  22. O. Bergman, S. Seki, and J. Sonnenschein, J. High Energy Phys., No. 12, 037 (2007).

  23. R. Casero, E. Kiritsisa, and A. Paredes, Nucl. Phys. B 787, 98 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to Alexander Gorsky for suggesting the problem and numerous discussions.

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS and by the Russian Foundation for Basic Research, project no. 19-02-00214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pikalov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pikalov, A. Holographic Model of Exciton Condensation in a Double Monolayer Dirac Semimetal. Jetp Lett. 113, 285–288 (2021). https://doi.org/10.1134/S0021364021040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021040020

Navigation