Skip to main content
Log in

Damage Tolerance Behavior of a Nickel-Based Super-alloy GTM718 Under Cold-TURBISTAN Variable Amplitude Loads

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, the damage tolerance behavior in terms of fatigue crack propagation behavior of an aero-engine material under a standard variable amplitude load sequence was predicted and compared with experimental results. The constant amplitude (CA) fatigue crack growth rate (FCGR) behavior of GTM718, a nickel-based super-alloy, was determined at various stress ratios R = σmin/σmax ranging from R = 0.1 to 0.7. The empirical fatigue crack growth law was derived from this data in terms of two-parameter crack driving force, ΔK*. Then, the fatigue crack propagation behavior of GTM718 under a standard cold-TURBISTAN variable amplitude load sequence was predicted using cycle-by-cycle approach and using the CA fatigue crack growth law. Also, experimental fatigue crack growth behavior under the same cold-TURBISTAN variable amplitude load sequence was determined and compared with predicted results. A fairly good correlation was observed with predicted and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elber W, in Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials, Philadelphia (1971), p 230.

    Book  Google Scholar 

  2. Manjunatha C M, Int J Damage Mech 17 (2008) 477.

    Article  CAS  Google Scholar 

  3. Newman Jr. J C, in Methods and Models for Predicting Fatigue Crack Growth Under Random Loading. ASTM STP 748, American Society for Testing and Materials, Philadelphia (1981), p 53

  4. Newman J C, Int J Fract 80 (1996) 193.

    Article  CAS  Google Scholar 

  5. Manjunatha C M, and Parida B K, AIAA J 42 (2004) 1536.

    Article  Google Scholar 

  6. Newman Jr. J C, Kota K, and Lacy T E, Eng Fract Mech 187 (2018) 211.

    Article  Google Scholar 

  7. Hertzberg R W, Newton C H, and Jaccard R, in Mechanics of Fatigue Crack Closure, ASTM STP 982, American Society for Testing and Materials, Philadelphia (1988), p 139.

  8. Donald K, and Paris P C, Int J Fatigue 21 (1999) S47.

    Article  CAS  Google Scholar 

  9. Tzamtzis A, and Kermanidis A T, Fatigue Fract Eng Struct 37 (2014) 751.

    Article  CAS  Google Scholar 

  10. Paris P C, Tada H, and Donald J K, Int J Fatigue 21 (1999) S35.

    Article  CAS  Google Scholar 

  11. Meggiolaro M A, and Pinho de Castro J T, Int J Fatigue 25 (2003) 843.

    Article  Google Scholar 

  12. Macha D E, Corby D M, and Jones J W, Proc Soc Exp Stress Anal 36 (1979) 207.

    Google Scholar 

  13. Shin C S, and Smith R A, Int J Fatigue 7 (1985) 87.

    Article  Google Scholar 

  14. Wei L W, and James M N, Eng Fract Mech 66 (2000) 223.

    Article  Google Scholar 

  15. Josefson B L, Svensson T, Ringsberg J W, Gustafsson T, and De Mare J, Eng Fract Mech 66 (2000) 587.

    Article  Google Scholar 

  16. Nandana M S, Udaya Bhat K, and Manjunatha C M, Fatigue Fract Eng Mater Struct 42 (2019) 719.

  17. James M N, in Proceedings of the Ninth international conference on Fracture, (eds) Karihaloo B L, Mai Y-W, Ripley M I, and Ritchie R O, Sydney Australia Pergamon Press, Amsterdam 5 (1997), p 2403.

  18. Kujawski D, Int J Fatigue 23 (2001) S239.

    Article  Google Scholar 

  19. Kujawski D, Int J Fatigue 23 (2001) 733.

  20. Dinda S, and Kujawski D, Eng Fract Mech 71 (2004) 1779.

    Article  Google Scholar 

  21. Vasudevan A K, Sadananda K, and Louat N, Mater Sci Eng A188 (1994) 1.

    Article  Google Scholar 

  22. Walker K, ASTM STP 462 (1970) 1.

    Google Scholar 

  23. Sadananda K, and Vasudevan A K, Int J Fatigue 26 (2004) 39.

    Article  Google Scholar 

  24. Johnson W S, in Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, American Society for Testing and Materials, Philadelphia (1981), p 85.

  25. Sree P C, and Kujawski D, in ASME International Mechanical Engineering Congress and Exposition (Vol. 46583, p. V009T12A033) American Society of Mechanical Engineers (2014).

  26. Malipatil S G, Majila A N, Fernando C D, and Manjunatha C M, in Proceedings of ICDMC 2019, (eds) Yang L J, Haq A, and Nagarajan L, Lecture Notes in Mechanical Engineering, Springer, Singapore (2020), p 379.

  27. ASTM, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM E 647–95, American Society for Testing and Materials PA 3.01 (1997), p 578.

  28. Ten Have A A, Cold Turbistan - final definition of a standardized fatigue test loading sequence for tactical aircraft cold section engine disc, Nationaal Lucht-en Ruimtevaartlaboratorium (1987) NLR TR 87054 L.

  29. ASTM, Standard Practices for Cycle Counting in Fatigue Analysis, ASTM E 1049–85, American Society for Testing and Materials PA 3.01 (1997), p 726.

  30. Caton M J, John R, Porter W J, and Burba M E, Int J Fatigue 38 (2012) 36.

    Article  CAS  Google Scholar 

  31. Boyce B L, and Ritchie R O, Eng Fract Mech 68 (2001) 129.

    Article  Google Scholar 

  32. Paris P C, and Erdogan F, J Basic Eng 85 (1963) 528.

    Article  CAS  Google Scholar 

  33. Malipatil S G, Majila A N, Fernando C D, Manjunatha C M, In Fatigue, Durability, and Fracture Mechanics, Proceedings of Fatigue Durability India 2019, (eds) Seetharamu S, Thimmarayappa Jagadish T, and Ravindra R Malagi, Lecture Notes in Mechanical Engineering, Springer, Singapore (2021), p 375.

  34. Manjunatha C M, AIAA J 44 (2006) 396.

    Article  Google Scholar 

  35. Nandna M S, Udaya Bhat K, and Manjunatha C M, Trans Indian Inst Met (2020) 1.

  36. Hou J, Wescott R, and Attia M, Eng Fract Mech 131 (2014), 406.

    Article  Google Scholar 

  37. Schijve J, Skorupa M, Skorupa A, Machniewicz T, and Gruszczynski P, Int J Fatigue 26 (2004) 1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. JJ Jadhav, Director, NAL, and Mr. MZ Siddique, Director, GTRE, for facilitating the conduct of these experiments and for providing the permission to publish this work. The technical staff members of Materials Evaluation Laboratory, Structural Integrity Division, CSIR-NAL, are thanked for their help in conducting the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharanagouda G. Malipatil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malipatil, S.G., Majila, A.N., Fernando, D.C. et al. Damage Tolerance Behavior of a Nickel-Based Super-alloy GTM718 Under Cold-TURBISTAN Variable Amplitude Loads. Trans Indian Inst Met 74, 901–907 (2021). https://doi.org/10.1007/s12666-021-02212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02212-x

Keywords

Navigation