Skip to main content
Log in

An investigation of the effect of warm laser shock peening on the surface modifications of [001]-oriented DD6 superalloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Warm laser shock peening (WLSP) is a novel surface modification technology involving a combination of laser shock peening (LSP) and dynamic strain aging (DSA) technologies. Nickel-based single-crystal superalloy is one of the leading materials for aeroengine turbine blades. Hence, studying the surface modification effect of WLSP on [001]-oriented DD6 nickel-based single-crystal superalloy has a real significance in the aerospace field. Three experimental heating temperatures, 260 °C, 280 °C, and 300 °C, were selected in the vicinity of DD6 DSA temperature, and WLSP treatment was carried out on [001]-oriented DD6 specimens. Microstructure, FEM simulation of laser-induced compressive residual stress field, microhardness, and microstructural changes after the heat treatment of specimens were studied. The test results show that WLSP could generate plenty of stable dislocation structures in the impacted regions, and the effect of WLSP is positively correlated with the experimental temperature. Besides, both the WLSP-induced compressive residual stress and the microhardness in the impacted region tend to increase with the increase in WLSP temperature. The microstructure of a WLSP specimen varies at different annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Reed RC (2006) The superalloys (fundamentals and applications). Cambridge University Press, New York

    Book  Google Scholar 

  2. Zhao Y, Gao H, Wen Z, Zhang X, Yang Y, Yue Z (2019) Combined elastic-plastic energy driving criteria of rafting behavior for nickel-based single crystal superalloys. Mater Sci Eng A 758:154–162. https://doi.org/10.1016/j.msea.2019.05.002

    Article  Google Scholar 

  3. Yan H, Tian S, Zhao G, Tian N, Zhang S, Liu L (2019) Deformation features and affecting factors of a Re/Ru-containing single crystal nickel-based superalloy during creep at elevated temperature. Mater Sci Eng A 768:138437. https://doi.org/10.1016/j.msea.2019.138437

    Article  Google Scholar 

  4. Wang JJ, Wen ZX, Zhang XH, Zhao YC, Yue ZF (2019) Effect mechanism and equivalent model of surface roughness on fatigue behavior of nickel-based single crystal superalloy. Int J Fatigue 125:101–111. https://doi.org/10.1016/j.ijfatigue.2019.03.041

    Article  Google Scholar 

  5. Lan J, Xuan W, Han Y, Li Y, Wu H, Shao W, Li C, Wang J, Ren ZM (2019) Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing. J Alloys Compd 805:78–83. https://doi.org/10.1016/j.jallcom.2019.07.056

    Article  Google Scholar 

  6. Yu ZY, Wang XZ, Yue ZF, Wang XM (2017) Investigation on microstructure evolution and fracture morphology of single crystal nickel-base superalloys under creep-fatigue interaction loading. Mater Sci Eng A 697:126–131. https://doi.org/10.1016/j.msea.2017.05.018

    Article  Google Scholar 

  7. Lukáš P, Čadek J, Šustek V, Kunz L (1996) Creep of CMSX-4 single crystals of different orientations in tension and compression. Mater Sci Eng A 208:149–157. https://doi.org/10.1016/0921-5093(95)10052-0

    Article  Google Scholar 

  8. Chaswal V (2013) A study of laser shock peening on fatigue behavior of IN718Plus superalloy: simulations and experiments. University of Cincinnati, (Doctoral dissertation)

  9. Nikitin I, Scholtes B, Maier HJ, Altenberger I (2004) High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scr Mater 50:1345–1350. https://doi.org/10.1016/j.scriptamat.2004.02.012

    Article  Google Scholar 

  10. Ding K, Ye L (2006) Laser shock peening: performance and process simulation. Woodhead Publishing, Cambridge

  11. Bhamare S, Ramakrishnan G, Mannava SR, Langer K, Vasudevan VK, Qian D (2013) Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti–6Al–2Sn–4Zr–2Mo alloy. Surf Coat Technol 232:464–474. https://doi.org/10.1016/j.surfcoat.2013.06.003

    Article  Google Scholar 

  12. Li YH, He WF, Zhou LC (2015) The strengthening mechanism of laser shock processing and its application on the aero-engine components (in Chinese). Sci Sin Technol 45:1–8. https://doi.org/10.1360/N092014-00234

    Article  Google Scholar 

  13. Ye C, Suslov S, Kim BJ, Stach EA, Cheng GJ (2011) Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Mater 59:1014–1025. https://doi.org/10.1016/j.actamat.2010.10.032

    Article  Google Scholar 

  14. Ye C, Liao Y, Suslov S, Lin D, Cheng GJ (2014) Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility. Mater Sci Eng A 609:195–203. https://doi.org/10.1016/j.msea.2014.05.003

    Article  Google Scholar 

  15. Ye C, Liao Y, Cheng GJ (2010) Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Adv Eng Mater 12:291–297. https://doi.org/10.1002/adem.200900290

    Article  Google Scholar 

  16. Lu GX, Liu JD, Qiao HC, Zhang GL, Cui CY, Zhou YZ, Jin T, Zhao JB, Sun XF, Hu ZQ (2016) Microscopic surface topography of a wrought superalloy processed by laser shock peening. Vacuum 130:25–33. https://doi.org/10.1016/j.vacuum.2016.04.032

    Article  Google Scholar 

  17. Lu GX, Liu JD, Qiao HC, Zhou YZ, Jin T, Zhao JB, Sun XF, Hu ZQ (2017) Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock peening. Opt Laser Technol 91:116–119. https://doi.org/10.1016/j.optlastec.2016.12.032

    Article  Google Scholar 

  18. Pei H, Wen Z, Li Z, Zhang Y, Yue Z (2018) Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy. Appl Surf Sci 440:790–803. https://doi.org/10.1016/j.apsusc.2018.01.226

    Article  Google Scholar 

  19. Cao J, Zhang J, Hua Y, Chen R, Li Z, Ye Y (2017) Microstructure and hot corrosion behavior of the Ni-based superalloy GH202 treated by laser shock processing. Mater Charact 125:67–75. https://doi.org/10.1016/j.matchar.2017.01.021

    Article  Google Scholar 

  20. Kattoura M, Mannava SR, Qian D, Vasudevan VK (2017) Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy. Int J Fatigue 102:121–134. https://doi.org/10.1016/j.ijfatigue.2017.04.016

    Article  Google Scholar 

  21. Geng Y, Dong X, Wang K, Yan X, Duan W, Fan Z, Wang W, Mei X (2019) Effect of microstructure evolution and phase precipitations on hot corrosion behavior of IN718 alloy subjected to multiple laser shock peening. Surf Coat Technol 370:244–254. https://doi.org/10.1016/j.surfcoat.2019.04.060

    Article  Google Scholar 

  22. Xiong J, Li ZH, Zhu YX, Huang MS (2017) Microstructure evolution mechanism based crystal-plasticity constitutive model for nickel-based superalloy and its finite element simulation (in Chinese). J Mech 49:763–781. https://doi.org/10.6052/0459-1879-17-183

    Article  Google Scholar 

  23. Zhou JZ, Han YH, Huang S, Sheng J, Meng XK, Zhang HF, Xu SQ (2015) Effect of different process temperatures on residual stress and nano-hardness of warm laser peened INl718 superalloy (in Chinese). Chin J Lasers 42:85–92. https://doi.org/10.3788/CJL201542.0703001

    Article  Google Scholar 

  24. Chen G, Lu L, Ke Z, Qin X, Ren C (2019) Influence of constitutive models on finite element simulation of chip formation in orthogonal cutting of Ti-6Al-4V alloy. Procedia Manuf 33:530–537. https://doi.org/10.1016/j.promfg.2019.04.066

    Article  Google Scholar 

  25. Xiong LQ, Chen DL, He WF, Li QP, Tong CL (2010) Application and research of numerical simulation in laser shock peening (in Chinese). Appl Laser 30:310–313. https://doi.org/10.3788/AL20103004.0310

    Article  Google Scholar 

  26. Fang Y, Zhao S, Yang L, Wang Y (2016) Effect of laser impacts on the fatigue properties of DD6 alloy. Optik 127:11094–11101. https://doi.org/10.1016/j.ijleo.2016.09.039

    Article  Google Scholar 

  27. China Aerospace Materials Handbook Editorial Committee (ed) (2001) China Aeronautical Materials Handbook (in Chinese). Standards Press of China, Beijing, pp 812–818

    Google Scholar 

  28. Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68:775–784. https://doi.org/10.1063/1.346783

    Article  Google Scholar 

  29. Fang Y, Li Y, He W, Lu Y, Li P (2013) Numerical simulation of residual stresses fields of DD6 blade during laser shock processing. Mater Des 43:170–176. https://doi.org/10.1016/j.matdes.2012.06.052

    Article  Google Scholar 

  30. Xu S, Huang S, Meng X, Sheng J, Zhang H, Zhou J (2017) Thermal evolution of residual stress in IN718 alloy subjected to laser peening. Opt Lasers Eng 94:70–75. https://doi.org/10.1016/j.optlaseng.2017.03.004

    Article  Google Scholar 

  31. Peyre P, Fabbro R, Merrien P, Lieurade HP (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113. https://doi.org/10.1016/0921-5093(95)10084-9

    Article  Google Scholar 

  32. Angulo FCAG I (2019) The effect of specimen cyclic deformation properties on residual stress generation by laser shock processing. Int J Mech Sci:370–381. https://doi.org/10.1016/j.ijmecsci.2019.03.029

  33. Qin L, Pei Y, Li S, Zhao X, Gong S, Xu H (2017) Effect of thermal stability of γ′ phase on the recrystallization behaviors of Ni-based single crystal superalloys. Mater Des 130:69–82. https://doi.org/10.1016/j.matdes.2017.05.044

    Article  Google Scholar 

  34. Fan H, Jiang H, Dong J, Yao Z, Zhang M (2019) An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization. J Mater Process Technol 269:52–64. https://doi.org/10.1016/j.jmatprotec.2019.01.013

    Article  Google Scholar 

  35. Trdan U, Skarba M, Grum J (2014) Laser shock peening effect on the dislocation transitions and grain refinement of Al–Mg–Si alloy. Mater Charact 97:57–68. https://doi.org/10.1016/j.matchar.2014.08.020

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (no. 51775419) and the National Key R&D Program of China (no. 2016YFB1102602).

Author information

Authors and Affiliations

Authors

Contributions

Tang ZH, Wang KD, Mei XS, Dong X, Geng YX, and Duan WQ contributed to the conception of the study. Tang ZH performed research, analyzed data, and wrote the paper. Sun XM helped to analyze data.

Corresponding author

Correspondence to Kedian Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Wang, K., Geng, Y. et al. An investigation of the effect of warm laser shock peening on the surface modifications of [001]-oriented DD6 superalloy. Int J Adv Manuf Technol 113, 1973–1988 (2021). https://doi.org/10.1007/s00170-021-06763-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06763-7

Keywords

Navigation