Skip to main content

Advertisement

Log in

Abstract

SiO2 ceramic has wide applications in various industries owing to their excellent properties. To make the most use of their properties and enlarge their applications, it is important to bond the SiO2 ceramic and metal. The brazing of SiO2 ceramic in recent years is reviewed in this article. The advantages and disadvantages of the active brazing method are discussed. The bonding between SiO2 ceramic and different types of metals is analyzed. Besides, to improve the wettability of the reaction interface, different improvement methods of filler metal are introduced. Finally, the development direction of bonding SiO2 ceramic in the future is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Khamkongkaeo A, Bootchanont A, Klysubun W, Amonpattaratkit P, Boonchuduang T, Tuchinda N, Phetrattanarangsi T, Nuntawong N, Kuimalee S, Lohwongwatana B (2019) Effect of phosphate compound on physical and mechanical properties of SiO2 ceramic. Ceram Int 45(1):1356–1362. https://doi.org/10.1016/j.ceramint.2018.07.253

    Article  Google Scholar 

  2. Lee SW, Hong JH, Kang JS, Callixte S, Park KC (2016) Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure. J Lumin 170:312–316. https://doi.org/10.1016/j.jlumin.2015.10.060

    Article  Google Scholar 

  3. Pinakidou F, Katsikini M, Kavouras P, Komninou F, Karakostas T, Paloura EC (2008) Structural role and coordination environment of Fe in Fe2O3–PbO–SiO2–Na2O composite glasses. J Non-Cryst Solids 354(2-9):105–111. https://doi.org/10.1016/j.jnoncrysol.2007.07.028

    Article  Google Scholar 

  4. Zhao H, Liang T, Liu B (2007) Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles. Int J Adhes Adhes 27(6):429–433. https://doi.org/10.1016/j.ijadhadh.2006.03.006

    Article  Google Scholar 

  5. Song YY, Li HL, Zhao HY, Liu D, Song XG, Feng JC (2017) Interfacial microstructure and mechanical property of brazed copper/SiO2 ceramic joint. Vacuum 141:116–123. https://doi.org/10.1016/j.vacuum.2017.03.037

    Article  Google Scholar 

  6. Höland W, Rheinberger V, Apel E, van’t Hoen C (2007) Principles and phenomena of bioengineering with glass-ceramics for dental restoration. J Eur Ceram Soc 27(2-3):1521–1526. https://doi.org/10.1016/j.jeurceramsoc.2006.04.101

    Article  Google Scholar 

  7. Kumar M, Kumar A (2020) Application of preference selection index method in performance based ranking of ceramic particulate (SiO2/SiC) reinforced AA2024 composite materials. Mater Today Proc 27:2667–2672. https://doi.org/10.1016/j.matpr.2019.11.244

    Article  Google Scholar 

  8. Zheng KL, Wei XS, Yan B, Yan PF (2020) Ceramic waste SiC particle-reinforced Al matrix composite brake materials with a high friction coefficient. Wear. 458-459:203424. https://doi.org/10.1016/j.wear.2020.203424

    Article  Google Scholar 

  9. Zhang L, Liu X, Li M, Xu E, Zhao F, Yuan H, Sun X, Zhang C, Gao L, Gao J (2020) Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material. Ceram Int 46(2):1760–1765. https://doi.org/10.1016/j.ceramint.2019.09.150

    Article  Google Scholar 

  10. Qi JL, Lin JH, Guo JL, Liu YL, Cao J, Zhang LX, Feng JC (2016) Plasma treatment on SiO2f/SiO2 composites for their assisted brazing with Nb. Vacuum 123:136–139. https://doi.org/10.1016/j.vacuum.2015.10.025

    Article  Google Scholar 

  11. Yang ZW, Zhang LX, Xue Q, He P, Feng JC (2012) Interfacial microstructure and mechanical property of SiO2-BN ceramics and Invar joint brazed with Ag–Cu–Ti active filler metal. Mater Sci Eng A 534:309–313. https://doi.org/10.1016/j.msea.2011.11.074

    Article  Google Scholar 

  12. Sarika Mishra RM, Vijayakumar M (2009) Structure and properties of short fibre reinforced silica matrix composite foams. Ceram Int 35:6–3116. https://doi.org/10.1016/j.ceramint.2009.04.027

    Article  Google Scholar 

  13. Liu HB, Zhang LX, Liu D, He P, Feng JC (2013) Interface microstructure analysis of SiO2glass ceramic and Ti–6Al–4V alloy joint brazed with Ti–Zr–Ni–Cu alloy. Mater Sci Technol 26(2):188–192. https://doi.org/10.1179/174328409x428891

    Article  Google Scholar 

  14. Yang ZW, Wang CL, Wang Y, Zhang LX, Wang DP, Feng JC (2017) Active metal brazing of SiO 2 –BN ceramic and Ti plate with Ag–Cu–Ti + BN composite filler. J Mater Sci Technol 33:10–1401. https://doi.org/10.1016/j.jmst.2017.04.005

    Article  Google Scholar 

  15. Yang ZW, Zhang LX, Ren W, Lei M, Feng JC (2013) Interfacial microstructure and strengthening mechanism of BN-doped metal brazed Ti/SiO2-BN joints. J Eur Ceram Soc 33(4):759–768. https://doi.org/10.1016/j.jeurceramsoc.2012.10.017

    Article  Google Scholar 

  16. Liu HB, Zhang LX, Wu LZ, Liu D, Feng JC (2008) Vacuum brazing of SiO2 glass ceramic and Ti–6Al–4V alloy using AgCuTi filler foil. Mater Sci Eng A 498(1-2):321–326. https://doi.org/10.1016/j.msea.2008.08.008

    Article  Google Scholar 

  17. Sato T, Taka N, Shim K (1996) Microwave joining of alumina to magnesia. J Ceram Soc Jpn 104(10):3

    Google Scholar 

  18. Dilermando Travessa MF, den Ouden G (2002) Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers. Mater Sci Eng A 337:10

    Google Scholar 

  19. Hu S, Feng D, Xia L, Wang K, Liu R, Xia Z, Niu H, Song X (2019) Joints of continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites to Ti60 alloy brazed using Ti-Zr-Ni-Cu active alloy. Chin J Aeronaut 32(3):715–722. https://doi.org/10.1016/j.cja.2018.07.006

    Article  Google Scholar 

  20. Hanson WB, Ironside KI, Fernie J (2000) Active metal brazing of zirconia. Acta Mater 48:4

    Article  Google Scholar 

  21. Guo W, Fu L, He P, Lin T, Shen Z, Liu XC, Wang T, Wang C (2019) Low-temperature brazing of alumina ceramics with bismuth-borate glass in air. Mater Charact 149:158–164. https://doi.org/10.1016/j.matchar.2019.01.020

    Article  Google Scholar 

  22. Zhou W, Qi S, Tu C, Zhao H, Wang C, Kou J (2007) Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci 104(2):1312–1318. https://doi.org/10.1002/app.25789

    Article  Google Scholar 

  23. Sciti D, Bellosi A, Esposito L (2001) Bonding of zirconia to super alloy with the active brazing technique. J Eur Ceram Soc 21:8

    Google Scholar 

  24. Ba J, Li H, Ren B, Qi B, Zheng X, Ning R, Qi J, Cao J, Cai W, Feng J (2019) In situ formation of TiB whiskers to reinforce SiO2-BN/Ti6Al4V brazed joints. Ceram Int 45(6):8054–8057. https://doi.org/10.1016/j.ceramint.2019.01.091

    Article  Google Scholar 

  25. Lin JH, Luo DL, Chen SL, Mao DS, Wang ZY, Ma Q, Qi JL, Feng JC (2016) Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer. Ceram Int 42(15):16619–16625. https://doi.org/10.1016/j.ceramint.2016.07.084

    Article  Google Scholar 

  26. Lin J, Ba J, Liu Y, Wang Y, Guo J, Luo D, Cai Y, Mao D, Qi J, Feng J (2017) Interfacial microstructure and improved wetting mechanism of SiO 2f /SiO 2 brazed with Nb by plasma treatment. Vacuum 143:320–328. https://doi.org/10.1016/j.vacuum.2017.06.041

    Article  Google Scholar 

  27. Ma Q, Li ZR, Niu HW, Wang ZY, Ba J, Qi JL, Feng JC, He P, Ma J (2018) The effect of crystal structure of SiO2 on the wettability of AgCuTi SiO2f/SiO2 system. Vacuum 157:124–127. https://doi.org/10.1016/j.vacuum.2018.08.046

    Article  Google Scholar 

  28. Ma Q, Li ZR, Chen SL, Luo DL, Zhou Z, Lin JH, Qi JL, Feng JC (2016) Regulating the surface structure of SiO 2f /SiO 2 composite for assisting in brazing with Nb. Mater Lett 182:159–162. https://doi.org/10.1016/j.matlet.2016.06.111

    Article  Google Scholar 

  29. Liu D, Zhang LX, Feng JC, Liu HB, He P (2009) Microstructure and fracture behavior of SiO2 glass ceramic and TC4 alloy joint brazed with TiZrNiCu alloy. J Cent South Univ Technol 16:6. https://doi.org/10.1007/s11771-009-0118-z

    Article  Google Scholar 

  30. Xin C, Li N, Jia J, Du J, Yan J (2018) Interfacial microstructures formation mechanism between SiO2 substrate and AgCuTi braze alloys. Ceram Int 44(15):17784–17791. https://doi.org/10.1016/j.ceramint.2018.06.246

    Article  Google Scholar 

  31. Lin J, Ba J, Cai Y, Ma Q, Luo D, Wang Z, Qi J, Cao J, Feng J (2017) Brazing SiO 2f /SiO 2 with TC4 alloy with the help of coating graphene. Vacuum 145:241–244. https://doi.org/10.1016/j.vacuum.2017.09.010

    Article  Google Scholar 

  32. Polmear IJ (2005) Light alloys. From traditional alloys to nanocrystals, Melbourne, Australia

  33. Rubino F, Parmar H, Esperto V, Carlone P (2020) Ultrasonic welding of magnesium alloys: a review. Mater Manuf Process 35(10):1051–1068. https://doi.org/10.1080/10426914.2020.1758330

    Article  Google Scholar 

  34. Zhou YG, Zeng WD, Yu HQ (2005) An investigation of a new near-beta forging process for titanium alloys and its application in aviation components. Mater Sci Eng A 393(1-2):204–212. https://doi.org/10.1016/j.msea.2004.10.016

    Article  Google Scholar 

  35. Janczak-rusch J, Piazza D, Boccaccini AR (2005) Joining of SiC fibre reinforced borosilicate glass matrix composites to molybdenum by metal and silicate brazing. J Mater Sci 40:3693–3701

    Article  Google Scholar 

  36. Zhao YX, Wang MR, Cao J, Song XG, Tang DY, Feng JC (2015) Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler. Mater Des 76:40–46. https://doi.org/10.1016/j.matdes.2015.03.046

    Article  Google Scholar 

  37. Lin T, Yang M, He P, Huang C, Pan F, Huang Y (2011) Effect of in situ synthesized TiB whisker on microstructure and mechanical properties of carbon–carbon composite and TiBw/Ti–6Al–4 V composite joint. Mater Des 32(8-9):4553–4558. https://doi.org/10.1016/j.matdes.2011.04.028

    Article  Google Scholar 

  38. Qi JL, Lin JH, Wan YH, Zhang LX, Cao J, Feng JC (2014) Joining of SiO2–BN ceramic to Nb using a CNT-reinforced brazing alloy. RSC Adv 4(109):64238–64243. https://doi.org/10.1039/c4ra11110a

    Article  Google Scholar 

  39. Zhou YH, Liu D, Niu HW, Song XG, Yang XD, Feng JC (2016) Vacuum brazing of C/C composite to TC4 alloy using nano-Al2O3 strengthened AgCuTi composite filler. Mater Des 93:347–356. https://doi.org/10.1016/j.matdes.2015.12.143

    Article  Google Scholar 

  40. Feng JC, Liu D, Zhang LX, Lin XC, He P (2010) Effects of processing parameters on microstructure and mechanical behavior of SiO2/Ti–6Al–4V joint brazed with AgCu/Ni interlayer. Mater Sci Eng A 527(6):1522–1528. https://doi.org/10.1016/j.msea.2009.10.050

    Article  Google Scholar 

  41. Brochu M, Pugh MD, Drew RAL (2004) Brazing silicon nitride to an iron-based intermetallic using a copper interlayer. Ceram Int 30(6):901–910. https://doi.org/10.1016/j.ceramint.2003.10.011

    Article  Google Scholar 

  42. Ba J, Lin J, Wang H, Qi B, Zhong Z, Wang Z, Ma Q, Qi J, Cao J, Feng J (2018) Carbon nanotubes-reinforced Ni foam interlayer for brazing SiO2-BN with Ti6Al4V alloy using TiZrNiCu brazing alloy. Ceram Int 44(4):3684–3691. https://doi.org/10.1016/j.ceramint.2017.11.136

    Article  Google Scholar 

  43. Qiao GJ, Zhang CG, Jin ZH (2003) Thermal cyclic test of alumina/kovar joint brazed by Ni–Ti active filler. Ceram Int 29:5

    Google Scholar 

  44. Li X, Wang H, Wang T, Zhang B, Yu T, Li R (2017) Microstructural evolution mechanisms of Ti600 and Ni-25%Si joint brazed with Ti-Zr-Ni-Cu amorphous filler foil. J Mater Process Technol 240:414–419. https://doi.org/10.1016/j.jmatprotec.2016.10.021

    Article  Google Scholar 

  45. He C, Zhao N, Shi C, Du X, Li J, Li H, Cui Q (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19(8):1128–1132. https://doi.org/10.1002/adma.200601381

    Article  Google Scholar 

  46. Toru Kuzumaki OU, Ichinose H, Ito K (2000) Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv Eng Mater 2(7):3

    Google Scholar 

  47. Chen C, Ma B, Liu B, He J, Xue H, Zuo Y, Li X (2019) Refinement mechanism and physical properties of arc melted invar alloy with different modifiers. Mater Chem Phys 227:138–147. https://doi.org/10.1016/j.matchemphys.2019.02.006

    Article  Google Scholar 

  48. Li H, Chen B, Tan C, Song X, Feng J (2020) Microstructure evolution and mechanical properties of laser metal deposition of Invar 36 alloy. Opt Laser Technol 125:106037. https://doi.org/10.1016/j.optlastec.2019.106037

    Article  Google Scholar 

  49. Zhao Y, Wu AP, Yao W, Wang ZM, Sato YS, Kokawa H (2011) Microstructure and mechanical properties of Nd:YAG laser welded Invar 36 alloy. Mater Sci Forum 675-677:739–742. https://doi.org/10.4028/www.scientific.net/MSF.675-677.739

    Article  Google Scholar 

  50. Sui QS, Li JX, Zhai YZ, Sun ZH, Wu YF, Zhao HT, Feng JH, Sun MC, Yang CL, Chen BA, Peng HF (2019) Effect of alloying with V and Ti on microstructures and properties in Fe–Ni–Mo–C invar alloys. Materialia 8:100474. https://doi.org/10.1016/j.mtla.2019.100474

    Article  Google Scholar 

  51. Tan H, Wang Y, Wang G, Zhang F, Fan W, Feng Z, Lin X (2020) Investigation on microstructure and properties of laser solid formed low expansion Invar 36 alloy. J Mater Res Technol 9(3):5827–5839. https://doi.org/10.1016/j.jmrt.2020.03.108

    Article  Google Scholar 

  52. Yang ZW, Zhang LX, Tian XY, Xue Q, Feng JC (2012) Correlation between microstructure and mechanical properties of active brazed Invar/SiO2–BN joints. Mater Sci Eng A 556:722–727. https://doi.org/10.1016/j.msea.2012.07.055

    Article  Google Scholar 

  53. Yang ZW, Zhang LX, Chen YC, Qi JL, He P, Feng JC (2013) Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint. Mater Sci Eng A 575:199–205. https://doi.org/10.1016/j.msea.2013.03.055

    Article  Google Scholar 

  54. Zhang LX, Sun Z, Shi JM, Tian CL, Feng JC (2018) Controlling the intermetallics growth in the SiO2-BN/Invar brazed joint by vertical few-layer graphene. Ceram Int 44(16):20012–20018. https://doi.org/10.1016/j.ceramint.2018.07.271

    Article  Google Scholar 

  55. Sun Z, Zhang LX, Hao TD, Feng JC (2018) Brazing of SiO2f/SiO2 composite to Invar using a graphene-modified Cu-23Ti braze filler. Ceram Int 44(13):15809–15816. https://doi.org/10.1016/j.ceramint.2018.05.259

    Article  Google Scholar 

  56. Chen H, Peng J, Fu L (2016) Effects of interfacial reaction and atomic diffusion on the mechanical property of Ti 3 SiC 2 ceramic to Cu brazing joints. Vacuum 130:56–62. https://doi.org/10.1016/j.vacuum.2016.05.002

    Article  Google Scholar 

  57. Zhang LX, Wu LZ, Liu D, Feng JC, Liu HB (2008) Interface microstructure and mechanical properties of the brazed SiO2 glass ceramic and 30Cr3 high-tensile steel joint. Mater Sci Eng A 496(1-2):393–398. https://doi.org/10.1016/j.msea.2008.05.050

    Article  Google Scholar 

  58. Zhang J, Wang GC, He YM, Sun Y, He XD (2013) Effect of joining temperature and holding time on microstructure and shear strength of Ti2AlC/Cu joints brazed using Ag-Cu filler alloy. Mater Sci Eng A 567:58–64. https://doi.org/10.1016/j.msea.2012.12.037

    Article  Google Scholar 

  59. Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2004) Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut 55(3-9):409–420. https://doi.org/10.1016/j.actaastro.2004.05.052

    Article  Google Scholar 

  60. Sun Y, Zhang J, Liu C (2020) Microstructure and formation mechanism of Cf/SiC and Nb joint brazed with laminated amorphous Ti–Zr–Cu–Ni/crystalline Ti composite filler. Vacuum 179:179. https://doi.org/10.1016/j.vacuum.2020.109480

    Article  Google Scholar 

  61. Zhang LX, Yang JH, Sun Z, Liu XP, Feng JC (2017) Vacuum brazing Nb and BN-SiO 2 ceramic using a composite interlayer with network reinforcement architecture. Ceram Int 43(11):8126–8132. https://doi.org/10.1016/j.ceramint.2017.03.136

    Article  Google Scholar 

  62. Shirzadi AA, Zhu Y, Bhadeshia HKDH (2008) Joining ceramics to metals using metallic foam. Mater Sci Eng A 496(1-2):501–506. https://doi.org/10.1016/j.msea.2008.06.007

    Article  Google Scholar 

  63. Yang W, He P, Lin T, Song C, Li R, Jia D (2013) Diffusion bonding of ZrB2–SiC and Nb using dynamic compressed Ni foam interlayer. Mater Sci Eng A 573:1–6. https://doi.org/10.1016/j.msea.2013.02.047

    Article  Google Scholar 

  64. Clarke DR, Oechsner M, Padture NP (2012) Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 37(10):891–898. https://doi.org/10.1557/mrs.2012.232

    Article  Google Scholar 

  65. Kwon SB, Kim BY, Jang IS, Jeon SW, Kim WH, Jeong H-J, Kim JP, Jung MK, Jeong BW, Kang BK, Yoon DH, Song YH (2020) Fabrication and luminous properties of phosphor ceramic for application in automotive laser headlight. Curr Appl Phys 20(7):862–865. https://doi.org/10.1016/j.cap.2020.04.001

    Article  Google Scholar 

  66. Ayode Otitoju T, Ugochukwu Okoye P, Chen G, Li Y, Onyeka Okoye M, Li S (2020) Advanced ceramic components: materials, fabrication, and applications. J Ind Eng Chem 85:34–65. https://doi.org/10.1016/j.jiec.2020.02.002

    Article  Google Scholar 

  67. Nagatsuka K, Sechi Y, Ma N, Nakata K (2014) Simulation of cracking phenomena during laser brazing of ceramics and cemented carbide. Sci Technol Weld Join 19(8):682–688. https://doi.org/10.1179/1362171814y.0000000241

    Article  Google Scholar 

  68. Williamson RL, Rabin BH, Byerly GE (1995) FEM study of the effects of interlayers and creep in reducing residual stresses and strains in ceramic-metal joints. Compos Eng 5(7):13

    Article  Google Scholar 

  69. Wang T, Zhang J, Lee W, Ivas T, Leinenbach C (2019) Numerical analysis on the residual stress distribution and its influence factor analysis for Si3N4/42CrMo brazed joint. Simul Model Pract Theory 95:49–59. https://doi.org/10.1016/j.simpat.2019.04.007

    Article  Google Scholar 

  70. Wang T, Ivas T, Lee W, Leinenbach C, Zhang J (2016) Relief of the residual stresses in Si 3 N 4 /Invar joints by multi-layered braze structure – Experiments and simulation. Ceram Int 42(6):7080–7087. https://doi.org/10.1016/j.ceramint.2016.01.096

    Article  Google Scholar 

  71. Zaccaria P, Dal Bello S, Pilan N (2007) Thermo-mechanical analyses of large ceramic rings during brazing process. Fusion Eng Des 82(15-24):2588–2594. https://doi.org/10.1016/j.fusengdes.2007.05.075

    Article  Google Scholar 

  72. Sun Z, Zhang LX, Chang Q, Zhang ZH, Hao TD, Feng JC (2018) Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer. J Mater Process Technol 255:8–16. https://doi.org/10.1016/j.jmatprotec.2017.11.058

    Article  Google Scholar 

  73. Wang Y, Yang ZW, Zhang LX, Wang DP, Feng JC (2016) Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti + TiH2 + BN composite filler. J Mater 2(1):66–74. https://doi.org/10.1016/j.jmat.2015.10.003

    Article  Google Scholar 

  74. He Y, Zhang J, Pan F, Liu C, Li X (2013) Uncovering the critical factor in determining the residual stresses level in Si3N4–GM filler alloy–42CrMo joints by FEM analysis and experiments. Ceram Int 39(1):709–718. https://doi.org/10.1016/j.ceramint.2012.06.082

    Article  Google Scholar 

  75. Zhang LX, Sun Z, Chang Q, Shi JM, Feng JC (2019) Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler. Ceram Int 45(2):1698–1709. https://doi.org/10.1016/j.ceramint.2018.10.052

    Article  Google Scholar 

  76. Hamilton NR, Robbie MO, Wood J, Galloway A, Katramados I, Milnes J (2011) The challenges in predicting the fatigue life of dissimilar brazed joints and initial finite element results for a tungsten to EUROFER97 steel brazed joint. Fusion Eng Des 86(9-11):1642–1645. https://doi.org/10.1016/j.fusengdes.2011.04.027

    Article  Google Scholar 

  77. Wei Z, Jiang W, Song M, Xiao C, Tu S-T (2018) Effects of element diffusion on microstructure evolution and residual stresses in a brazed joint: Experimental and numerical modeling. Materialia 4:540–548. https://doi.org/10.1016/j.mtla.2018.11.012

    Article  Google Scholar 

  78. Gong J, Jiang W, Fan Q, Chen H, Tu ST (2009) Finite element modelling of brazed residual stress and its influence factor analysis for stainless steel plate-fin structure. J Mater Process Technol 209(4):1635–1643. https://doi.org/10.1016/j.jmatprotec.2008.04.014

    Article  Google Scholar 

  79. Almuslmani M, Ganesan R (2019) Vibration of tapered composite driveshaft based on the hierarchical finite element analysis. Compos Struct 209:905–927. https://doi.org/10.1016/j.compstruct.2018.10.053

    Article  Google Scholar 

  80. Ha YS, Cho JR, Kim TH, Kim JH (2008) Finite element analysis of rubber extrusion forming process for automobile weather strip. J Mater Process Technol 201(1-3):168–173. https://doi.org/10.1016/j.jmatprotec.2007.11.290

    Article  Google Scholar 

  81. Peereswara Rao MV, Raj D, Harursampath D, Renji K (2020) Estimation of material properties of metal matrix composites using finite element method in the presence of micromechanics damages. Mater Today Proc 21:1135–1143. https://doi.org/10.1016/j.matpr.2020.01.062

    Article  Google Scholar 

  82. Yang JH, Zhang LX, Sun Z, Feng JC (2017) Brazing SiO2-BN diphase ceramic with Nb by using multilayer Ti-Ni composite foils. Vacuum 146:179–186. https://doi.org/10.1016/j.vacuum.2017.09.022

    Article  Google Scholar 

  83. Chen B, Zou W-J, Li W-W, Wu S-B, Xiong H-P, Wu X (2020) Joining of SiO2f/SiO2 composite to Nb using Ag-Cu-In-Ti brazing alloys. J Mater Sci Technol 50:13–20. https://doi.org/10.1016/j.jmst.2019.08.002

    Article  Google Scholar 

  84. Ba J, Zheng XH, Ning R, Lin JH, Qi JL, Cao J, Cai W, Feng JC (2018) Brazing of SiO 2 -BN modified with in situ synthesized CNTs to Ti6Al4V alloy by TiZrNiCu brazing alloy. Ceram Int 44(9):10210–10214. https://doi.org/10.1016/j.ceramint.2018.03.018

    Article  Google Scholar 

  85. Li Z, Xu Z, Ma L, Wang S, Liu X, Yan J (2018) Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part I: Cavitation characteristics. Ultrason Sonochem 49:249–259. https://doi.org/10.1016/j.ultsonch.2018.08.009

    Article  Google Scholar 

  86. Li Z, Xu Z, Ma L, Wang S, Liu X, Yan J (2019) Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect. Ultrason Sonochem 50:278–288. https://doi.org/10.1016/j.ultsonch.2018.09.027

    Article  Google Scholar 

  87. Shchukin DG, Skorb E, Belova V, Mohwald H (2011) Ultrasonic cavitation at solid surfaces. Adv Mater 23(17):1922–1934. https://doi.org/10.1002/adma.201004494

    Article  Google Scholar 

  88. Dai X, Cao J, Chen Z, Song X, Feng J (2016) Brazing SiC ceramic using novel B4C reinforced Ag–Cu–Ti composite filler. Ceram Int 42(5):6319–6328. https://doi.org/10.1016/j.ceramint.2016.01.021

    Article  Google Scholar 

  89. Zhao WW, Yan JC, Yang W, Yang SQ (2013) Capillary filling process during ultrasonically brazing of aluminium matrix composites. Sci Technol Weld Join 13(1):66–69. https://doi.org/10.1179/174329308x271742

    Article  Google Scholar 

  90. Sun Z, Zhang LX, Qi JL, Zhang ZH, Tian CL, Feng JC (2015) Brazing of SiO2f/SiO2 composite modified with few-layer graphene and Invar using AgCuTi alloy. Mater Des 88:51–57. https://doi.org/10.1016/j.matdes.2015.08.146

    Article  Google Scholar 

  91. Feng Z, Aung TL, Shao C, Lu F, Tsutsumi S, Ma N (2020) A design method of tensile triangles and low transformation temperature weld metal for reduction of stress concentration and residual stress of welded joints. Mar Struct 72:72. https://doi.org/10.1016/j.marstruc.2020.102759

    Article  Google Scholar 

  92. Lu Y, Zhu S, Zhao Z, Chen T, Zeng J (2020) Numerical simulation of residual stresses in aluminum alloy welded joints. J Manuf Process 50:380–393. https://doi.org/10.1016/j.jmapro.2019.12.056

    Article  Google Scholar 

  93. Shahani AR, Shakeri I, Rans CD (2020) Effect of residual stress redistribution and weld reinforcement geometry on fatigue crack growth of butt welded joints. Int J Fatigue 139. https://doi.org/10.1016/j.ijfatigue.2020.105780

  94. Samandi MG, Evans P (1997) Application of ion implantation to ceramic/metal joining. Nucl Inst Methods Phys Res B 127(128):4

    Google Scholar 

  95. Zhao BR, Li GB, Gao P, Lei TQ, Song SC, Cao XJ (2005) Influence of nickel ion implantation on the inactive braze joining abilities of Al2O3 ceramics. Nucl Instrum Methods Phys Res, Sect B 239(3):147–151. https://doi.org/10.1016/j.nimb.2005.03.289

    Article  Google Scholar 

  96. Yoshiyuki Nemoto KU, Satou M, Hasegawa A, Abe K (1998) Analysis and measurement of residual stress distribution of vanadium/ceramics joints for fusion reactor applications. J Nucl Mater 258-263:6

    Google Scholar 

  97. Kim TW, Chang HS, Park SW (2001) Re-distribution of thermal residual stress in a brazed Si3N4/stainless steel joint using laminated interlayers. J Mater Sci Lett 20:4

    Google Scholar 

Download references

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST, Natural Science Foundation of Hunan Province (Grant No. 2020JJ5716), Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2019JQ-372), the Project of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Grant No. ZZYJKT2019-01), Huxiang High-Level Talent Gathering Project of HUNAN Province (Grant No. 2019RS1002), and Fundamental Research Funds for the Central Universities of Central South University (Grant No. 1053320192410).

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen and Ruixiang Yi wrote the paper; Chen Shi, Yuxiang Li, and Xiaoqiang Ren analyzed the data.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Consent to participate

All authors agreed with the consent to participate.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, R., Chen, C., Li, Y. et al. Brazing of SiO2 ceramic. Int J Adv Manuf Technol 113, 1799–1816 (2021). https://doi.org/10.1007/s00170-021-06685-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-06685-4

Keywords

Navigation