Skip to main content
Log in

Effects of bed longitudinal inflexion and sediment porosity on basal entrainment mechanism: insights from laboratory debris flows

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Channel morphology and bed sediment erodibility are two crucial factors that significantly affect debris flow entrainment processes. Current debris flow entrainment models mostly hypothesize the erodible beds are infinite with uniform slopes. In this study, a series of small-scale flume experiments were conducted to investigate the effects of bed longitudinal inflexion and sediment porosity on basal entrainment characteristics. Experimental observations revealed that sediment entrainment is negligible at early stages and accelerates rapidly as several erosion points appear. Continual evolution of flow-bed interfaces changes interactions between debris flows and bed sediments, rendering the interfacial shear action involved into a mixed shear and frontal collisional action. Lower bed sediment porosity will change the spatial arrangement and orientation of particle mixture, strengthen the interlocking and anti-slide forces of adjacent sediment particles, and promote the formation of particle clusters, all of which will increase bed sediment resistance to erosion. By examining the post-experimental bed morphology, the slope-cutting amounts and topographic reliefs are determined to positively correlate with longitudinal transition angles. These high topographic reliefs may indicate the propensity of triangular slab erosion, rather than strip-shaped slab erosion, in non-uniform channels with relatively steep erodible beds. Empirical formulas are obtained that denote the relationships among bed sediment strength, channel curvature radius, and sediment porosity through a multi-parameter regression analysis. This study may aid in clarifying the complex coupling effects of spatial variations in debris flow dynamics as well as sediment erodibility and bed morphology in non-uniform channels with abundant seismic loose material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

α :

Transition angle

θ 0 :

Slope of the flume baseboard

θ :

Slope of the erodible bed

h:

Flow depth

g :

Gravity acceleration

v:

Debris flow velocity

Fr :

The Froude number

N B :

The Bagnold number

N S :

The Savage number

N F :

The friction number

ρ s :

Bulk density of sediment particle

μ :

Interstitial fluid viscosity

v s :

Volumetric solid fraction

δ :

Characteristic grain size

ρ f :

Interstitial fluid density

\( \dot{\gamma} \) :

Shear rate

ϕ :

Internal friction angle of bed sediment

dmax,d50 :

The maximum and median diameter of bed sediment

η :

Bed sediment porosity

Δh:

Compression height

ρ b :

Bulk density of bed sediment

ρ,ρ 1,ρ 2 :

Bulk density of debris flow

Z :

Total bed entrained depth

V :

Normalized total entrained volume

\( {Z}_m^{\ast } \) :

Normalized maximum entrained depth

:

Slope cutting amount

Δθ :

Bed relief

E :

Erosion rate

τ b :

Basal shear stress

τ c :

Bed resistance

C g :

Empirical coefficient

τ b _ cvex, τ b _ cave :

Basal shear stress at the convex and concave sites

τ c _ cvex, τ c _ cave :

Back-calculated bed resistance at the convex and concave sites

\( {\tau}_{\mathrm{c}\_\mathrm{cvex}}^{MC},{\tau}_{\mathrm{c}\_\mathrm{cave}}^{MC} \) :

Bed resistance at the convex and concave site based on the Mohr–Coulomb criterion

R cvex, R cave :

Bed curvature radius at the convex and concave sites

E cvex, E cave :

Average erosion rate at the convex and concave sites

a,b,c,d,e,f:

Dimensionless coefficients

χ,ψ :

Dimensionless parameters

K d :

Coefficient of erodibility

Φ:

Granular concentrations in the Kelvin-Helmholtz instabilities

λ :

Erosion wave wavelength

ρ w :

Water density

ω :

Coarse particle content of the debris flow mixture

References

  • Annandale GW (2006) Scour technology-mechanics and engineering practice. McGraw-Hill, New York, p 430

    Google Scholar 

  • Arattano M, Deganutti AM, Marchi L (1997) Debris flow monitoring activities in an instrumented watershed on the Italian Alps. In: Proceedings of the 1st ASCE international conference on debris-flow hazards mitigation: mechanics, Prediction & Assessment, San Francisco, California, 7–9 August 1997. American Society of Civil Engineers, New York, pp 506–515

    Google Scholar 

  • Armanini A, Capart H, Fraccarollo L, Larcher M (2005) Rheological stratification in experimental free-surface flows of granular-liquid mixtures. J Fluid Mech 532:269–319. https://doi.org/10.1017/S0022112005004283

    Article  Google Scholar 

  • Armanini A, Larcher M, Odorizzi M (2011) Dynamic impact of a debris flow front against a vertical wall. In: Proceedings of the 5th international conference on debris-flow hazards mitigation: mechanics, prediction and assessment. Padua, Italy, pp 1041–1049

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc A 225(1160):49–63. https://doi.org/10.1098/rspa.1954.0186

    Article  Google Scholar 

  • Berger C, McArdell B, Schlunegger F (2011) Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J Geophys Res 116:F01002. https://doi.org/10.1029/2010JF001722

    Article  Google Scholar 

  • Bouchut F, Fernández-Nieto E, Mangeney A, Lagrée P (2008) On new erosion models of Savage-Hutter type for avalanches. Acta Mech 199(1):181–208

    Article  Google Scholar 

  • Brufau P, Garcia-Navarro P, Ghilardi P, Natale L, Savi F (2000) 1D mathematical modelling of debris flow. J Hydraul Res 38(6):435–446

    Article  Google Scholar 

  • Capart H (2000) Dam-break induced geomorphic flows and the transition from solid- to fluid-like behaviour across evolving interfaces. PhD thesis, University Catholique de Louvain, Belgium.

  • Capart H, Fraccarollo L (2011) Transport layer structure in intense bed-load, Geophys. Res Lett 38(20). https://doi.org/10.1029/2011GL049408

  • Chang DS, Zhang LM (2010) Simulation of the erosion process of landslide dams due to overtopping considering variations in soil erodibility along depth. Nat Hazards Earth Syst Sci 10(4):933–946. https://doi.org/10.5194/nhess-10-9a33-2010

    Article  Google Scholar 

  • Chang DS, Zhang LM, Xu Y, Huang RQ (2011) Field testing of erodibility of two landslide dams triggered by the 12 May Wenchuan earthquake. Landslides 8(3):321–332. https://doi.org/10.1007/s10346-011-0256-x

    Article  Google Scholar 

  • Chapuis RP, Gatien T (1986) An improved rotating cylinder technique for quantitative measurements of the scour resistance of clays. Can Geotech J 23:83–87

    Article  Google Scholar 

  • Chen H, Zhang LM (2015) EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes. Geosci Model Dev 8:829–844

    Article  Google Scholar 

  • Choi CE, Ng CWW, Au-Yeung SCH, Goodwin G (2015) Froude scaling of landslide debris in flume modeling. Landslides 12(6):1197–1206

  • Crosta GB, Imposimato S, Roddeman D (2009) Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng Geol 109:135–145. https://doi.org/10.1016/j.enggeo.2008.10.004

    Article  Google Scholar 

  • Dietrich WE, Dunne T (1978) Sediment budget for a small catchment in mountainous terrain. Z Geomorphol 29:191–206

    Google Scholar 

  • Dufresne A (2012) Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events. Earth Surf Process Landf 37(14):1527–1541

    Article  Google Scholar 

  • Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth Pt C 26:645–650. https://doi.org/10.1016/S1464-1917(01)00062-9

    Article  Google Scholar 

  • Estep J, Dufek J (2012) Substrate effects from force chain dynamics in dense granular flows. J Geophys Res 117:F01028. https://doi.org/10.1029/2011JF002125

    Article  Google Scholar 

  • Farin M, Mangeney A, Roche O (2014) Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J Geophys Res Earth Surf 119:504–532. https://doi.org/10.1002/2013JF002750

    Article  Google Scholar 

  • Fraccarollo L, Capart H (2002) Riemann wave description of erosional dam-break flows. J Fluid Mech 461:183–228. https://doi.org/10.1017/s0022112002008455

    Article  Google Scholar 

  • Fredlund DG (2006) Unsaturated soil mechanics in engineering practice. J Geotech Geoenviron Eng 132(3):286–321

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. HallEnglewood Cliffs, Prentice, p 604

    Google Scholar 

  • Guo C, Cui Y (2020) Pore structure characteristics of debris flow source material in the Wenchuan earthquake area. Eng Geol 267:105499. https://doi.org/10.1016/j.enggeo.2020.105.499

    Article  Google Scholar 

  • Haas T, Woerkom T (2016) Bed scour by debris flows: experimental investigation of effects of debris-flow composition. Earth Surf Process Landf 41(13):1951–1966

    Article  Google Scholar 

  • Haas T, Braat L, Leuven JRFW, Lokhorst IR, Kleinhans MG (2015) Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments. J Geophys Res Earth Surf 120(9):1949–1972. https://doi.org/10.1002/2015JF003525

    Article  Google Scholar 

  • Han Z, Chen G, Li Y, He Y (2015) Assessing entrainment of bed material in a debris-flow event: a theoretical approach incorporating Monte Carlo method. Earth Surf Process Landf 40(14):1877–1890. https://doi.org/10.1002/esp.3766

    Article  Google Scholar 

  • Hanson GJ, Simon A (2001) Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol Process 15:23–38

    Article  Google Scholar 

  • Hauksson S, Pagliardi M, Barbolini M, Jóhannesson T (2007) Laboratory measurements of impact forces of supercritical granular flow against mast-like obstacles. Cold Reg Sci Technol 49:54–63

    Article  Google Scholar 

  • Hsu L, Dietrich WE, Sklar LS (2008) Experimental study of bedrock erosion by granular flows. J Geophys Res 113:F02001. https://doi.org/10.1029/2007JF000778

    Article  Google Scholar 

  • Hu KH, Li P, Wang XK (2016) Experimental study of entrainment behavior of debris flow over channel inflexion points. J Moutain Sci 13(6):971–984. https://doi.org/10.1007/s11629-015-3749-6

    Article  Google Scholar 

  • Hübl J, Suda J, Proske D (2009) Debris flow impact estimation. In: The 11th international symposium on water management and hydraulic Eng Conf Ohrid, Macedonia, pp 1-4

  • Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flows. Debris-flow hazards and related phenomena. Springer, In, pp 135–158

    Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. https://doi.org/10.1029/97rg00426

    Article  Google Scholar 

  • Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. Geophys Res 117:F03006. https://doi.org/10.1029/2011JF002189

    Article  Google Scholar 

  • Iverson RM (2015) Scaling and design of landslide and debris-flow experiments. Geomorphology 244:9–20

  • Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53:27–58. https://doi.org/10.1002/2013RG000447

    Article  Google Scholar 

  • Iverson RM, Logan M, LaHusen RG, Berti M (2010) The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res 115:F03005. https://doi.org/10.1029/2009JF001514

    Article  Google Scholar 

  • Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4(2):116–121. https://doi.org/10.1038/ngeo1040

    Article  Google Scholar 

  • Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res-Earth 121:2333–2357. https://doi.org/10.1002/2016jf003933

    Article  Google Scholar 

  • Julian JP, Torres R (2006) Hydraulic erosion of cohesive riverbanks. Geomorphology 76:193–206

    Article  Google Scholar 

  • Kang C, Chan D, Su F, Cui P (2017) Runout and entrainment analysis of an extremely large rock avalanche: a case study of Yigong, Tibet, China. Landslides 14:123–139. https://doi.org/10.1007/s10346-016-0677-7

    Article  Google Scholar 

  • Lanzoni S, Gregoretti C, Stancanelli LM (2017) Coarse-grained debris flow dynamics on erodible beds. J Geophys Res Earth Surf 122(3):592–614. https://doi.org/10.1002/2016JF004046

    Article  Google Scholar 

  • Li P, Hu KH, Wang XK (2018) Debris flow entrainment rates in non-uniform channels with concave and convex slopes. J Hydraul Res 56(2):156–167. https://doi.org/10.1080/00221686.2017.1313321

    Article  Google Scholar 

  • Li P, Wang JD, Hu KH, Wang F (2020a) Experimental study of debris-flow entrainment over stepped-gradient beds incorporating bed sediment. Eng Geol 274:105708. https://doi.org/10.1016/j.enggeo.2020.105708

    Article  Google Scholar 

  • Li P, Hu KH, Zhao JH (2020b) Energy dissipation of debris flows over stepped gradients and erodible beds in an open channel. J Hydraul Eng 146(7):06020008. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001766

    Article  Google Scholar 

  • Lobovský L, Botia-Vera E, Castellana F, Mas-Soler J, Souto-Iglesias A (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluids Struct 48:407–434

    Article  Google Scholar 

  • Luna BQ, Remaître A, van Asch TWJ, Malet JP, van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63–75. https://doi.org/10.1016/j.enggeo.2011.04.007

    Article  Google Scholar 

  • Ma C, Deng J, Wang R (2018) Analysis of the triggering conditions and erosion of a runoff-triggered debris flow in Miyun County, Beijing, China. Landslides 15:2475–2485

    Article  Google Scholar 

  • Major JJ, Iverson RM, McTigue DF, Macias S, Fiedorowicz BK (1997) Geotechnical properties of debris-flow sediments and slurries. In: Debris-Flow hazards mitigation: mechanics, prediction, and assessment, edited by C L Chen. pp 249–259, Am Soc Civ Eng New York

  • Mangeney A, Bouchut F, Thomas N, Vilotte JP, Bristeau MO (2007a) Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J Geophys Res 112. https://doi.org/10.1029/2006jf000469

  • Mangeney A, Tsimring LS, Volfson D, Aranson IS, Bouchut F (2007b) Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys Res Lett 34(22):L22401. https://doi.org/10.1029/2007gl031348

    Article  Google Scholar 

  • Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. Geophys Res 115:F03040. https://doi.org/10.1029/2009JF0.01462

    Article  Google Scholar 

  • McCoy S, Kean JW, Coe JA, Tucker G, Staley DM, Wasklewicz T (2012) Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. J Geophys Res 117:F03016. https://doi.org/10.1029/2011JF002278

    Article  Google Scholar 

  • Medina V, Hurlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142

    Article  Google Scholar 

  • Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25

  • Obrien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261

    Article  Google Scholar 

  • Ouyang C, He S, Tang C (2015) Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng Geol 194:62–72. https://doi.org/10.1016/j.enggeo.2014.07.012

    Article  Google Scholar 

  • Parsons JD, Whipple KX, Simoni A (2001) Experimental study of the grain-flow, fluid-mud transition in debris flows. J Geol 109(4):427–447

    Article  Google Scholar 

  • Procter J, Cronin SJ, Fuller IC, Lube G, Manville V (2010) Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology 38(1):67–70

    Article  Google Scholar 

  • Rajaratnam N (1982) Erosion by submerged circular jets. J Hydraul Div 108(HY2):262–267

    Article  Google Scholar 

  • Rickenmann D, Weber D, Stepanov B (2003) Erosion by debris flows in field and laboratory experiments. In: Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, edited by D. Rickenmann and R C Chen. pp 883-894, Millpress Rotterdam Netherlands

  • Roche O, Montserrat S, Niño Y, Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows. J Geophys Res 115:B09206. https://doi.org/10.1029/2009JB007133

    Article  Google Scholar 

  • Rowley PJ, Kokelaar P, Menzies M, Waltham D (2011) Shear-derived mixing in dense granular flows. J Sediment Res 81:874–884

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215. https://doi.org/10.1017/S0022112089000340

    Article  Google Scholar 

  • Schurch P, Densmore AL, Rosser NJ, McArdell BW (2011) Dynamic controls on erosion and deposition on debris-flow fans. Geology 39:827–830. https://doi.org/10.1130/g32103.1

    Article  Google Scholar 

  • Scott KM, Vallance JW, Kerle N, Macias JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Process Landf 30(1):59–79. https://doi.org/10.1002/esp.1127

    Article  Google Scholar 

  • Shugar D, Kostaschuk R, Ashmore P, Desloges J, Burge L (2007) In situ jet-testing of the erosional resistance of cohesive streambeds. Can J Civ Eng 34:1192–1195

    Article  Google Scholar 

  • Smerdon ET, Beasley RP (1961) Critical tractive forces in cohesive soils. Agric Eng 42(1):26–29

    Google Scholar 

  • Sovilla B, Burlando P, Bartelt P (2006) Field experiments and numerical modeling of mass entrainment in snow avalanches. J Geophys Res 111:F03007. https://doi.org/10.1029/2005JF000391

    Article  Google Scholar 

  • Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ (1997) Erosion by pyroclastic flows on Lascar Volcano, Chile. Bull Volcanol 58:557–565

    Article  Google Scholar 

  • Stock JD, Dietrich WE (2006) Erosion of steepland valleys by debris flows. Geol Soc Am Bull 118:1125–1148

    Article  Google Scholar 

  • Suzuki T, Hotta N, Miyamoto K (2009) Numerical simulation method of debris flow introducing the non-entrainment erosion rate equation, at the transition point of riverbed gradient or the channel width and in the area of sabo dam. J Jpn Soc Erosion Control Eng 62(3):14–22

  • Takahashi T (1978) Mechanical Characteristics of Debris Flow. J Hydr Eng Div-Asce 104:1153–1169

    Article  Google Scholar 

  • Takahashi T, Nakagawa N, Harada T, Yamashiki Y (1992) Routing debris flows with particle segregation. J Hydraul Eng 118:1490–1507

    Article  Google Scholar 

  • Tang C, van Asch TWJ, Chang M, Chen GQ, Zhao XH, Huang XC (2012) Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms. Geomorphology 139–140:559–576. https://doi.org/10.1016/j.geomorph.2011.12.021

    Article  Google Scholar 

  • Tognacca C, Bezzola G, Minor H (2000) Threshold criterion for debris-flow initiation due to channel-bed failure. In: Wieczorek GF (ed) Proceedings of the 2nd international conference on debris flow, hazards and mitigation. Balkema Rotterdam, Taipei Taiwan, pp 89–97

    Google Scholar 

  • Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Appl Mech Rev 44:37–76

    Article  Google Scholar 

  • Wan CF, Fell R (2004) Investigation of rate of erosion of soils in embankment dams. J Geotech Geoenviron Eng 130(4):373–380

    Article  Google Scholar 

  • Wang F, Wang J, Chen X, Chen J (2019) The influence of temporal and spatial variations on phase separation in debris flow deposition. Landslides 16:497–514. https://doi.org/10.1007/s10346-018-1119-5

    Article  Google Scholar 

  • Zhong QM, Chen SS, Mei SA, Cao W (2018) Numerical simulation of landslide dam breaching due to overtopping. Landslides 15(6):1183–1192. https://doi.org/10.1007/s10346-017-0935-3

    Article  Google Scholar 

  • Zhou GG, Zhou M, Shrestha MS, Song D, Choi CE, Cui KF, Peng M, Shi ZM, Zhu XH, Chen HY (2019a) Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floods. Geomorphology 334:29–43. https://doi.org/10.1016/j.geomorph.2019.02.035

    Article  Google Scholar 

  • Zhou GG, Li S, Song D, Choi CE, Chen X (2019b) Depositional mechanisms and morphology of debris flow: physical modelling. Landslides 16:315–332. https://doi.org/10.1007/s10346-018-1095-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the debris flow simulation test platform of the Department of Geology, Northwest University, China.

Funding

The study is funded by the National Natural Science Foundation of China (Grant No. 41801002), the National Key Research and Development Plan (Grant No. 2018YFC1504703), the National Natural Science Foundation of China (Nos. 41630639), and the National Natural Science Foundation of China (Grant No. 41371039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiading Wang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Wang, J., Hu, K. et al. Effects of bed longitudinal inflexion and sediment porosity on basal entrainment mechanism: insights from laboratory debris flows. Landslides 18, 3041–3062 (2021). https://doi.org/10.1007/s10346-020-01618-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01618-w

Keywords

Navigation