Skip to main content
Log in

Finite Element Method for Fractional Parabolic Integro-Differential Equations with Smooth and Nonsmooth Initial Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study the space-time finite element discretizations for time fractional parabolic integro-differential equations in a bounded convex polygonal domain in \({\mathbb {R}}^d (d=1,2,3)\). Both spatially semidiscrete and fully discrete finite element approximations are considered and analyzed. We use piecewise linear and continuous finite elements to approximate the space variable whereas the time discretization uses two fully discrete schemes based on the convolution quadrature, namely the backward Euler and the second-order backward difference. For the spatially discrete scheme, optimal order a priori error estimates are derived for smooth initial data, i.e., when \(u_0\in H_0^1(\varOmega )\cap H^2(\varOmega )\). Moreover, for the homogeneous problem, almost optimal error estimates for positive time are established for nonsmooth initial data, i.e., when the initial function \(u_0\) is only in \( L^2(\varOmega )\). The error estimates for the fully discrete methods are shown to be optimal in time for both smooth and nonsmooth initial data under the specific choice of the kernel operator in the integral. Finally, we provide some numerical illustrations to verify our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amer, Y.A., Mahdy, A.M.S., Youssef, E.S.M.: Solving fractional integro-differential equations by using Sumudu transform method and Hermite spectral collocation method. CMC Comput. Mater. Continua 54(2), 161–180 (2018)

    Google Scholar 

  2. Arikoglu, A., Ozkol, I.: Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solitons Fractals 40(2), 521–529 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bakaev, N.Y., Larsson, S., Thomée, V.: Euler, backward, type methods for parabolic integro-differential equations in Banach space. RAIRO Modél. Math. Anal. Numér. 32(1), 85–99 (1998)

    Article  MathSciNet  Google Scholar 

  4. Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72(12), 4587–4593 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Numer. Math. 131(1), 1–31 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cannon, J.R., Lin, Y.: Nonclassical \(H^1\) projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo 25(3), 187–201 (1988)

    Article  MathSciNet  Google Scholar 

  7. Chen, C., Shih, T.: Finite Element Methods for Integrodifferential Equations, vol. 9. World Scientific, River Edge (1998)

    Book  Google Scholar 

  8. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MathSciNet  Google Scholar 

  9. El-Borai, M.M., El-Nadi, K.E.S., Ahmed, H.M., El-Owaidy, H.M., Ghanem, A.S., Sakthivel, R.: Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 5(1), 1460030 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  11. Fujita, H., Suzuki, T.: Evolution problems. In: Handbook of Numerical Analysis, vol. II, Handb. Numer. Anal., II, pp. 789–928. North-Holland, Amsterdam (1991)

  12. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Hu, L., Ren, Y., Sakthivel, R.: Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays. Semigr. Forum 79(3), 507–514 (2009)

    Article  MathSciNet  Google Scholar 

  14. Huang, L., Li, X.-F., Zhao, Y., Duan, X.-Y.: Approximate solution of fractional integro-differential equations by Taylor expansion method. Comput. Math. Appl. 62(3), 1127–1134 (2011)

    Article  MathSciNet  Google Scholar 

  15. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM. J. Numer. Anal 51(1), 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  16. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM. J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  Google Scholar 

  17. Jin, B., Li, B., Zhou, Z.: An analysis of the Crank–Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    Article  MathSciNet  Google Scholar 

  18. Karaa, S., Mustapha, K., Pani, A.K.: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74(1), 519–535 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  20. Lin, Y., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM. J. Numer. Anal. 28(4), 1047–1070 (1991)

    Article  MathSciNet  Google Scholar 

  21. Lubich, C.: Discretized fractional calculus. SIAM. J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  22. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  23. Lubich, C.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)

    Article  MathSciNet  Google Scholar 

  24. Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

    Article  MathSciNet  Google Scholar 

  25. Ma, X., Huang, C.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219(12), 6750–6760 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Mahata, S., Sinha, R.K.: On the existence, uniqueness and stability results for time-fractional parabolic integro-differential equations. J. Integral Equ. Appl. 32(4), 457–477 (2020)

    Article  Google Scholar 

  27. Maleknejad, K., Sahlan, M.N., Ostadi, A.: Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets. In: Proceedings of the World Congress on Engineering, vol. 1 (2013)

  28. Mohammed, D.S.: Numerical solution of fractional integro-differential equations by least squares method and shifted Chebyshev polynomial. Math. Probl. Eng. Art. ID 431965, 5 (2014)

  29. Momani, S., Noor, M.A.: Numerical methods for fourth-order fractional integro-differential equations. Appl. Math. Comput. 182(1), 754–760 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87(313), 2259–2272 (2018)

    Article  MathSciNet  Google Scholar 

  31. Oyedepo, T., Taiwo, O.A., Abubakar, J.U., Ogunwobi, Z.O.: Numerical studies for solving fractional integro-differential equations by using least squares method and Bernstein polynomials. Fluid Mech. Open Access 3(3), 1000142 (2016)

    Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Qiao, L., Wang, Z., Xu, D.: An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Appl. Numer. Math. 151, 199–212 (2020)

    Article  MathSciNet  Google Scholar 

  34. Qiu, W., Xu, D., Chen, H.: A formally second-order BDF finite difference scheme for the integro-differential equations with the multi-term kernels. Int. J. Comput. Math. 97(10), 2055–2073 (2020)

    Article  MathSciNet  Google Scholar 

  35. Rawashdeh, E.A.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1–6 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Saadatmandi, A., Dehghan, M.: A Legendre collocation method for fractional integro-differential equations. J. Vib. Control 17(13), 2050–2058 (2011)

    Article  MathSciNet  Google Scholar 

  37. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319–327 (1988)

    Article  MathSciNet  Google Scholar 

  38. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 25. Springer, Berlin (2006)

    MATH  Google Scholar 

  39. Thomée, V., Zhang, N.-Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53(187), 121–139 (1989)

    Article  MathSciNet  Google Scholar 

  40. Unhale, S.I., Kendre, S.D.: Numerical solution of nonlinear fractional integro-differential equation by collocation method, 2018. Malaya J. Mat. 6(1), 73–79 (2018)

    Article  MathSciNet  Google Scholar 

  41. Zaeri, S., Saeedi, H., Izadi, M.: Fractional integration operator for numerical solution of the integro-partial time fractional diffusion heat equation with weakly singular kernel. Asian-Eur. J. Math. 10(04), 1750071 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zhou, J., Xu, D.: Alternating direction implicit difference scheme for the multi-term time-fractional integro-differential equation with a weakly singular kernel. Comput. Math. Appl. 79(2), 244–255 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajen Kumar Sinha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahata, S., Sinha, R.K. Finite Element Method for Fractional Parabolic Integro-Differential Equations with Smooth and Nonsmooth Initial Data. J Sci Comput 87, 7 (2021). https://doi.org/10.1007/s10915-021-01412-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01412-3

Keywords

Mathematics Subject Classification

Navigation