Skip to main content
Log in

Numerical Analysis and Simulation for a Wave Equation with Dynamical Boundary Control

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with a theoretical and numerical analysis for the stability of a vibrating beam of finite length which is fixed at one end and free at the other end and with a dynamical boundary control. On the theoretical results, we prove the existence and uniquenes of global solutions, and the stability of the total energy. Furthemore, we introduced a numerical method based on finite element discretization in a spatial variable and finite difference scheme in time. Error estimates fot the semi-discrete and fully discrete schemes are provided and numerical experiments performed. From the numerical results, the rate of convergence are shoown to be consistent with the order of convegence expected from the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alcantara, A.A., Clark, H.R., Rincon, M.A.: Theoretical analysis and numerical simulation for a hyperbolic equation with Dirichlet and acoustic boundary conditions. Comput. Appl. Math. 37(4), 4772–4792 (2018)

    Article  MathSciNet  Google Scholar 

  2. Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptot. Anal. 10, 1–60 (2019)

    MATH  Google Scholar 

  3. Alabau, F.: Stabilisation frontire indirecte de systmes faiblement coupls. Comptes Rendus de l’Acadmie des Sciences: Series I Mathematics 328(11), 1015–1020 (1999)

    MATH  Google Scholar 

  4. Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2(2), 127–150 (2002)

    Article  MathSciNet  Google Scholar 

  5. Francis, B.A.: \(L^\infty \) - control theory. Lecture Notes in Control and Sciences, (1986)

  6. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Copetti, M.I.M., Rincon, M.A.: Numerical analysis for a locally damped wave equation. J. Appl. Anal. Comput. 5(2), 169–182 (2013)

    MathSciNet  MATH  Google Scholar 

  8. El-Arwadi, T., Youssef, W.: On the stabilization of the Bresse Beam with KelvinâVoigt damping. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09611-z

    Article  Google Scholar 

  9. Arwadi, E.L.T., Copetti, M.I.M., Youssef, W.: On the theoretical and numerical stability of the thermoviscoelastic Bresse system. Z Angew Math. Mech. 99(10), 1–20 (2019)

    Article  MathSciNet  Google Scholar 

  10. Lions, J.L.: Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  11. Mörgul, O.: Dynamic boundary control of a Euler-Bernoulli beam. IEEE Trans. Autom. Control 37(5), 639–642 (1992)

    Article  MathSciNet  Google Scholar 

  12. Rao, B., Wehbe, A.: Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent. J. Evol. Equ. 5, 137–152 (2005)

    Article  MathSciNet  Google Scholar 

  13. Rincon, M.A., Liu, I.-S., Huarcaya, W.R., Carmo, B.A.: Numerical analysis for a nonlinear model of elastic strings with moving ends. Appl. Numer. Math. 135, 146–164 (2019)

    Article  MathSciNet  Google Scholar 

  14. Rincon, M.A., Quintino, N.P.: Numerical analysis and simulation for a nonlinear wave equation. J. Comput. Appl. Math. 296, 247–264 (2016)

    Article  MathSciNet  Google Scholar 

  15. Russell, D.L.: A General framework for the study of indirect damping mechanisms in elastic systems. J. Math. Anal. Appl. 173(2), 339–358 (1993)

    Article  MathSciNet  Google Scholar 

  16. Tebou, L.R.T.: Stabilization of the wave equation with localized nonlinear damping. J. Differ. Equ. 145, 502–524 (2002)

    Article  MathSciNet  Google Scholar 

  17. Tebou, L.R.T., Zuazua, E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95, 563–598 (2003)

    Article  MathSciNet  Google Scholar 

  18. Teman, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  Google Scholar 

  19. Wehbe, A.: Rational energy decay rate in a wave equation with dynamical control. Appl. Math. Lett. 16, 357–364 (2003)

    Article  MathSciNet  Google Scholar 

  20. Wehbe, A.: Optimal energy decay rate in the Rayleigh beam equation with boundary dynamical controls. Bull. Belg. Math. Soc. 12, 1–16 (2005)

    Google Scholar 

Download references

Acknowledgements

The author M.A. Rincon is partially supported by CNPq-Brasil under Grant 301788/2016-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Bzeih.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bzeih, M., El Arwadi, T., Wehbe, A. et al. Numerical Analysis and Simulation for a Wave Equation with Dynamical Boundary Control. J Sci Comput 87, 6 (2021). https://doi.org/10.1007/s10915-021-01408-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01408-z

Keywords

Mathematics Subject Classification

Navigation