Skip to main content
Log in

Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of \(CO\) Diatomic Molecule

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Confinement effects of Aharonov–Bohm (AB) flux and magnetic fields with topological defect on \(CO\) diatomic molecule modeled by screened modified Kratzer potential is investigated in this paper. The all-encompassing effects of the fields and topological defect result in a strongly repulsive system. We discover that the collective effect of the fields and defect is more intense than the lone and dual effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to sustain a low-energy medium for the molecule modeled by SMKP, the topological defect and weak AB field are required, whereas the magnetic field can be used as a control parameter or enhancer. The effects of the topological defect and magnetic and AB fields on the thermal and magnetic properties of the system are duly analyzed. We observe that the system tends to exhibit both a paramagnetic and diamagnetic behavior for weak and intense magnetic field, respectively, and some sort of saturation at high magnetic field. To further validate our findings, we map our result to 3D and a comparison of our results with what one obtains in literature reveals an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.-C. Qiang, S.-H. Dong, Phys. Lett. A 368, 13 (2007)

    ADS  MathSciNet  Google Scholar 

  2. G.-F. Wei, C.-Y. Long, X.-Y. Duan, S.H. Dong, Phys. Scr. 77, 035001 (2008)

    ADS  Google Scholar 

  3. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Berlin, 2007).

    MATH  Google Scholar 

  4. S.H. Dong, X.Y. Gu, J. Phys. Conf. Ser. 96, 012109 (2008)

    Google Scholar 

  5. C.O. Edet, K.O. Okorie, H. Louis, N.A. Nzeata-Ibe, Indian J Phys 94, 243 (2020)

    ADS  Google Scholar 

  6. S.H. Dong, W.C. Qiang, G.H. Sun, V.B. Bezerra, J. Phys. A: Math. Theor. 40, 10535 (2007)

    ADS  Google Scholar 

  7. C.O. Edet, P.O. Okoi, Rev. Mex. Fis. 65, 333 (2019)

    Google Scholar 

  8. C.O. Edet, P.O. Okoi, A.S. Yusuf, P.O. Ushie, P.O. Amadi, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-019-01650-0

    Article  Google Scholar 

  9. P.O. Okoi, C.O. Edet, T.O. Magu, Rev. Mex. Fis. 66, 1 (2020)

    Google Scholar 

  10. C.O. Edet, P.O. Okoi, S.O. Chima, Rev. Bras. Ens. Fís. 42, e20190083 (2019)

    Google Scholar 

  11. C. Edet, A. Ikot, U. Okorie et al., Eigenfunction uncertainties and thermal properties of the Schrodinger equation with screened modified Kratzer potential for diatomic molecules. Authorea (2020). https://doi.org/10.22541/au.159098050.09308623

    Article  Google Scholar 

  12. A.A. Babaei-Brojeny, M. Mokari, Phys. Script. 84, 045003 (2011)

    ADS  Google Scholar 

  13. B.J. Falaye, G.-H. Sun, R. S-Ortigoza, S.H. Dong, Phys. Rev. E 93, 053201 (2016)

    ADS  Google Scholar 

  14. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Eur. Phys. J. D 74, 159 (2020)

    ADS  Google Scholar 

  15. Y. Aharonov, D. Bohm, Phys. Rev. 119, 485 (1959)

    ADS  Google Scholar 

  16. P. Zanardi, M. Rasetti, Phys. Lett. A 264, 94 (1999)

    ADS  MathSciNet  Google Scholar 

  17. A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vedral, J. Modern Opt. 47, 2501 (2000)

    ADS  MathSciNet  Google Scholar 

  18. V. Vedral, Int. J. Quantum Inf. 1, 1 (2003)

    Google Scholar 

  19. K. Bakke, C. Furtado, Quantum Inf. Comput. 11, 444 (2011)

    MathSciNet  Google Scholar 

  20. K. Bakke, C. Furtado, Phys. Lett. A 375, 3956 (2011)

    ADS  MathSciNet  Google Scholar 

  21. K. Bakke, C. Furtado, Ann. Physics (NY) 327, 376 (2012)

    ADS  Google Scholar 

  22. N. Byers, N.C. Yang, Phys. Rev. Lett. 7, 46 (1961)

    ADS  Google Scholar 

  23. S. Oh, C.-M. Ryu, Phys. Rev. B 51, 13441 (1995)

    ADS  Google Scholar 

  24. H. Mathur, A.D. Stone, Phys. Rev. B. 44, 10957 (1991)

    ADS  Google Scholar 

  25. H. Mathur, A.D. Stone, Phys. Rev. Lett. 68, 2964 (1992)

    ADS  Google Scholar 

  26. A.V. Balatsky, B.L. Altshuler, Phys. Rev. Lett. 70, 1678 (1993)

    ADS  Google Scholar 

  27. D. Loss, P. Goldbart, A.V. Balatsky, Phys. Rev. Lett. 65, 1655 (1990)

    ADS  Google Scholar 

  28. X.-C. Gao, T.-Z. Qian, Phys. Rev. B 47, 7128 (1993)

    ADS  Google Scholar 

  29. T.-Z. Qian, Z.-B. Su, Phys. Rev. Lett. 72, 2311 (1994)

    ADS  Google Scholar 

  30. K. Bakke, C. Furtado, Modern Phys. Lett. A 26, 1331 (2011)

    ADS  Google Scholar 

  31. B.J. Falaye, G.-H. Sun, M.S. Liman, K.J. Oyewumi, S.H. Dong, Laser Phys. Lett. 13, 116003 (2016)

    ADS  Google Scholar 

  32. M. Eshghi, H. Mehraban, J. Math. Phys. 57, 082105 (2016)

    ADS  MathSciNet  Google Scholar 

  33. M. Eshghi, H. Mehraban, C. R. Phys. 18, 47 (2017)

    ADS  Google Scholar 

  34. N. Ferkous, A. Bounames, Commun. Theor. Phys. 59, 679 (2013)

    ADS  Google Scholar 

  35. S.M. Ikhdair, B.J. Falaye, J. Ass, Arab. Univ. Basic Appl. Sci. 16, 1 (2014)

    Google Scholar 

  36. M. Eshghi, H. Mehraban, Eur. Phys. J. Plus 132, 121 (2017)

    Google Scholar 

  37. M. Eshghi, H. Mehraban, S.M. Ikhdair, Eur. Phys. J. A 52, 201 (2016)

    ADS  Google Scholar 

  38. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282 (2015)

    ADS  Google Scholar 

  39. A.B. Oliveira, K. Bakke, Proc. R. Soc. A: Math. Phys. Eng. Sci. 472, 201 (2016)

    Google Scholar 

  40. M. Hosseini, H. Hassanabadi, S. Hassanabadi, Eur. Phys. J. Plus 134, 6 (2019)

    Google Scholar 

  41. Y. Chargui, A. Dhahbi, Ann. Phys. 423, 168328 (2020)

    Google Scholar 

  42. A. Valentim, K. Bakke, J.A. Plascak, Euro. J. Phys. 40, 045101 (2019)

    Google Scholar 

  43. M. Eshghi, R. Sever, S.M. Ikhdair, Chin. Phys. B 27, 020301 (2018)

    ADS  Google Scholar 

  44. R.R. Oliveira, A.A. Araújo Filho, F.C. Lima, R.V. Maluf, C.A. Almeida, Euro. Phys. J. Plus 134, 495 (2019)

    Google Scholar 

  45. C.O. Edet, P.O. Amadi, M.C. Onyeaju, U.S. Okorie, R. Sever, G.J. Rampho, H.Y. Abdullah, I.H. Salih, A.N. Ikot, J. Low. Temp. Phys. (2020). https://doi.org/10.1007/s10909-020-02533-z

    Article  Google Scholar 

  46. S.H. Dong, M.L. Cassou, J. Yu, F.J. Ángeles, A.L. Rivera, Intl. J. Quant. Chem. 107, 366 (2007)

    ADS  Google Scholar 

  47. S.H. Dong, M.C. Irisson, J Math Chem 50, 881 (2012)

    MathSciNet  Google Scholar 

  48. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211 (2017)

    ADS  Google Scholar 

  49. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, R. Zeng, X.T. You, Chem. Phys. Lett. 676, 150 (2017)

    ADS  Google Scholar 

  50. G.J. Rampho, A.N. Ikot, C.O. Edet, U.S. Okorie, Mol. Phys (2020). https://doi.org/10.1080/00268976.2020.1821922

    Article  Google Scholar 

  51. G.A. de Marques, V.B. Bezerra, Class. Quantum Grav. 19, 985 (2002)

    ADS  Google Scholar 

  52. A. Vilenkin, Phys. Rev. Lett. 46, 1169 (1981)

    ADS  Google Scholar 

  53. M. Barriola, A. Vilenkin, Phys. Rev. Lett. 63, 341 (1989)

    ADS  Google Scholar 

  54. A. Vilenkin, E.P.S. Shellard, Cosmic String and Other Topological Defects (Cambridge University Press, Cambridge, 1994).

    MATH  Google Scholar 

  55. A. Vilenkin, Phys. Rep. 121, 263 (1985)

    ADS  MathSciNet  Google Scholar 

  56. M.O. Katanaev, I.V. Volovich, Ann. Phys. 216, 1 (1992)

    ADS  Google Scholar 

  57. R.A. Puntigam, & H. H. Soleng Class Quantum Gravity 14, 1129 (1997)

    ADS  MathSciNet  Google Scholar 

  58. K. Bakke, C. Furtado, S. Sergeenkov, Europhys. Lett. 87, 30002 (2009)

    ADS  Google Scholar 

  59. V.B. Bezerra, Phys. Rev. D 35, 2031 (1987)

    ADS  MathSciNet  Google Scholar 

  60. G. de A-Marques, C. Furtado, V.B. Bezerra, F. Moraes, J. Phys. A: Math. Gen. 34, 5945 (2001)

    ADS  Google Scholar 

  61. K. Bakke, C. Furtado, Quantum Inf. Process. 12, 119 (2013)

    ADS  MathSciNet  Google Scholar 

  62. C.A. de Lima Ribeiro, C. Furtado, F. Moraes, Europhys. Lett. 62, 306 (2003)

    ADS  Google Scholar 

  63. C. Furtado, F. Moraes, J. Phys. A: Math. Theor. 33, 5513 (2000)

    ADS  Google Scholar 

  64. L.H. Ford, A. Vilenkin, J. Phys. A: Math. Theor. 14, 2353 (1981)

    ADS  Google Scholar 

  65. C. Furtado, A. Rosas, S. Azevedo, Europhys. Lett. 79, 57001 (2007)

    ADS  Google Scholar 

  66. C. Furtado, F. Moraes, Phys. Lett. A 188, 394 (1994)

    ADS  Google Scholar 

  67. A.L. Silva Netto, C. Chesman, C. Furtado, Phys. Lett. A 372, 3894 (2008)

    ADS  Google Scholar 

  68. L. Dantas, C. Furtado, A.L. Silva Netto, Phys. Lett. A 379, 11 (2015)

    ADS  MathSciNet  Google Scholar 

  69. N. Soheibi, M. Hamzavi, M. Eshghi, S.M. Ikhdair, Eur. Phys. J. B 90, 212 (2017)

    ADS  Google Scholar 

  70. C. Filgueiras, M. Rojas, G. Aciole, E.O. Silva, Phys. Lett. A 379, 2110 (2015)

    ADS  MathSciNet  Google Scholar 

  71. K. Bakke, C. Furtado, Int. J. Geo. Meth. Mod. Phys. 16, 1950172 (2019)

    Google Scholar 

  72. C. Furtado, B.C.G. da Cunha, F. Moraes, E.R. Bezerra de Mello, V.B. Bezerra, Phys. Lett. A 21, 90 (1994)

    ADS  Google Scholar 

  73. H. Hassanabadi, M. Hosseinpour, Eur. Phys. J. C 76, 553 (2016)

    ADS  Google Scholar 

  74. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    ADS  Google Scholar 

  75. H. Çiftçi, R.L. Hall, N. Saad, Phys. Lett. A 340, 388 (2005)

    ADS  Google Scholar 

  76. B.J. Falaye, Cent. Eur. J. Phys. 10, 960 (2012)

    Google Scholar 

  77. A.N. Ikot, U.S. Okorie, A.T. Ngiangia, C.A. Onate, C.O. Edet, I.O. Akpan, P.O. Amadi, Eclet. Quím. J. 45, 65 (2020)

    Google Scholar 

  78. O. Olendski, Phys. Lett. A 383, 1110 (2019)

    ADS  Google Scholar 

  79. A. Bera, A. Ghosh, M. Ghosh, J. Magn. Magn. Mater. 484, 391–402 (2019)

    ADS  Google Scholar 

  80. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018)

    ADS  Google Scholar 

  81. R. Jiang, C.S. Jia, Y.Q. Wang, X.L. Peng, L.H. Zhang Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019)

    ADS  Google Scholar 

  82. C.W. Li, J. Ciston, M.W. Kanan, Nature 508, 504 (2014)

    ADS  Google Scholar 

  83. M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S.M. Zakeeruddin, J. Luo, M.T. Mayer, M. Grätzel, Nat. Commun. 6, 7326 (2015)

    ADS  Google Scholar 

  84. J. Shen, R. Kortlever, R. Kas, Y.Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K.J.P. Schouten, G. Mul, M.T.M. Koper, Nat. Commun. 6, 8177 (2015)

    ADS  Google Scholar 

  85. P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010)

    ADS  Google Scholar 

  86. A. Boda, A. Chatterjee, Phys. B 448, 244 (2014)

    ADS  Google Scholar 

  87. A. Boda, M. Gorre, A. Chatterjee, Superlattices Microstruct. 71, 261 (2014)

    ADS  Google Scholar 

  88. C.S. Jia, J. Li, Y.S. Liu, X.L. Peng, X. Jia, L.H. Zhang, R. Jiang, X.P. Li, J.Y. Liu, Y.L. Zhao, J. Mol. Liq. 315, 113751 (2020)

    Google Scholar 

  89. C.W. Wang, J. Wang, Y.S. Liu, J. Li, X.-L. Peng, C.S. Jia, L.H. Zhang, L.Z. Yi, J.Y. Liu, C.J. Li, X. Jia, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114912

    Article  Google Scholar 

  90. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193 (2019)

    Google Scholar 

  91. B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, C.S. Jia, J. Mol. Struct. 1199, 126958 (2020)

    Google Scholar 

  92. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26 (2018)

    Google Scholar 

  93. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1 (2018)

    Google Scholar 

  94. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122 (2018)

    Google Scholar 

  95. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors dedicate this work to (Dr Akpan Ndem Ikot) on his birthday anniversary. We also thank the anonymous referees for the careful reading and the suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Edet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, C.O., Ikot, A.N. Effects of Topological Defect on the Energy Spectra and Thermo-magnetic Properties of \(CO\) Diatomic Molecule. J Low Temp Phys 203, 84–111 (2021). https://doi.org/10.1007/s10909-021-02577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-021-02577-9

Keywords

Navigation