Skip to main content
Log in

On the build-up of dust aerosols and possible indirect effect during Indian summer monsoon break spells using recent satellite observations of aerosols and cloud properties

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Association of higher (lower) rainfall with lower (higher) Aerosol Optical Depth (AOD) is consistent with the understanding that increased washout (build-up) and shorter (longer) life-time of aerosols occur in wetter (drier) conditions. Given the life-time of aerosols, it is imperative to examine how aerosols impact active/break (wetter/drier than normal) spells, prominent intraseasonal variability (ISV) of Indian summer monsoon (ISM), through their composite analysis using recent satellite observations of aerosols and cloud properties, circulation and rainfall. Dust aerosols can act as CCN and participate efficiently in cloud processes during active phase. During breaks, build-up of desert dust transported by prevalent circulation, is associated with lower cloud effective radius implying aerosols’ indirect effect where they can inhibit cloud growth in the presence of reduced moisture and decrease precipitation efficiency/rainfall. Correspondingly, correlation albeit small, between intraseasonal anomalies of AOD and rainfall is negative, when AOD leads rainfall by 3–5 days implying that indirect aerosols impact is effective during breaks, though it is not the dominant responsible factor. During breaks, lower shortwave flux at top of atmosphere hints at dust-induced semi-direct effect. As breaks are permanent features of ISM, incorporation of dust-induced feedbacks in models, is essential for improved ISV simulation and ISM prediction.

Highlights

  • Active (break) spell of summer monsoon is found to be associated with lower (higher) aerosol optical depth over India.

  • The build-up of desert dust transported to India by prevalent circulation during summer monsoon breaks, is associated with lower cloud effective radius which indicates the indirect effect of aerosols.

  • Predominant indirect effect induced by dust aerosols along with secondary semi-direct effect can lead to further rainfall reduction during intense and persistent breaks.

  • Proper incorporation of dust aerosol induced heating during breaks in models, is essential for simulation of intraseasonal variation inherent to Indian summer monsoon and thereby improving its prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure  1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ackerman S A, Strabala K I, Menzel W P, Frey R A, Moeller C C and Gumley L E 1998 Discriminating clear sky from clouds with MODIS; J. Geophys. Res. 103 32,141–32,157, https://doi.org/10.1029/1998jd200032.

    Article  Google Scholar 

  • Ahn C, Torres O and Bhartia P K 2008 Comparison of ozone monitoring instrument UV aerosol products with aqua/moderate resolution imaging spectroradiometer and multiangle imaging spectroradiometer observations in 2006; J. Geophys. Res. 113 D16S27.

  • Ahn C O, Torres and Jethva H 2014 Assessment of OMI near-UV aerosol optical depth over land; J. Geophys. Res. Atmos. 119, https://doi.org/10.1002/2013JD020188.

  • Albrecht B A 1989 Fractional cloudiness; Science 245 1227–1230.

    Article  Google Scholar 

  • Bollasina M, Nigam S and Lau K M 2008 Absorbing aerosols and summer monsoon evolution over south Asia: An observational portrayal; J. Clim. 21 3221–3239.

    Article  Google Scholar 

  • Bhattacharya A, Chakraborty A and Venugopal V 2017 Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon; Clim. Dyn. 49 2131–2145.

    Article  Google Scholar 

  • Bhawar R L and Devara P C S 2010 Study of successive contrasting monsoons (2001–2002) in terms of aerosol variability over a tropical station, Pune, India; Atmos. Chem. Phys. 10 29–37.

    Article  Google Scholar 

  • Bréon F M et al. 2002 Aerosol effect on cloud droplet size monitored from satellite; Science 295 834–838.

    Article  Google Scholar 

  • Blanford H F 1886 Rainfall of India; Mem. Ind. Met. Dept. 2 217–448.

    Google Scholar 

  • Chylek P, Dubey M K, Lohmann U and Ramanathan V et al. 2006 Aerosol indirect effect over the Indian Ocean; Geophys. Res. Lett. 33 L06806, https://doi.org/10.1029/2005gl025397.

    Article  Google Scholar 

  • Costantino L and Bréon F M 2010 Analysis of aerosol-cloud interaction from multi-sensor satellite-observations; Geophys. Res. Lett. 37 L11801, https://doi.org/10.1029/2009gl041828.

    Article  Google Scholar 

  • Dee D P, Uppala S M and Simmons A J et al. 2011 The ERA-interim reanalysis: Configuration and performance of the data assimilation system; Quart. J. Roy. Meteorol. Soc. 137 553–597.

  • DeMott P J, Sassan K, Poellot M R, Baumgardner D, Rogers D C, Brooks S D, Prenni A J and Kreidenweis S M 2003 African dust aerosols as atmospheric ice nuclei; Geophys. Res. Lett. 30 1732, http://dx.doi.org/10.1029/2003GL017410.

    Article  Google Scholar 

  • Gadgil S and Joseph P V 2003 On breaks of the Indian monsoon; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 112 529–558.

    Google Scholar 

  • Gadgil S 2003 The Indian monsoon and its variability; Ann. Rev. Earth. Planet. Sci. 31 429–467.

    Article  Google Scholar 

  • Gadgil S, Vinaychandran P N, Francis P A and Gadgil S 2004 Extremes of Indian summer monsoon rainfall, ENSO, equatorial Indian Ocean Oscillation; Geophys. Res. Lett. 31, https://doi.org/10.1029/2004gl019733.

    Article  Google Scholar 

  • Gassó S and Torres O 2016 The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean; Atmos. Meas. Tech. 9 3031–3052, https://doi.org/10.5194/amt-9-3031-2016.

    Article  Google Scholar 

  • Goswami B N 1998 Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedbacks; J. Clim. 11 501–522.

    Article  Google Scholar 

  • Han Q, Rossow W B and Lacis A A 1994 Near-global survey of effective droplet radii in liquid water clouds using ISCCP data; J. Clim. 7 465–497.

    Article  Google Scholar 

  • Harikishan G, Padmakumari B, Maheskumar R S and Kulkarni J R 2015 Radiative effect of dust aerosols on cloud microphysics and meso-scale dynamics during monsoon breaks over Arabian sea; Atmos. Environ. 105 22–31.

    Article  Google Scholar 

  • Hazra A, Goswami B N and Chen Jen-Ping 2013 Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations; J. Atmos. Sci. 70 2073–2087.

    Article  Google Scholar 

  • Holben B N, Eck T F and Slutsker I et al. 1998 AERONET: A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote Sens. Environ. 66 1–16.

  • Huang J, Minnis P, Lin B, Wang T, Yi Y, Hu Y, Mack S S and Ayers K 2006a Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES; Geophys. Res. Lett. 33 L06824.

    Google Scholar 

  • Huang J, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y and Ayers K 2006b Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia; Geophys. Res. Lett. 33 L19802.

    Article  Google Scholar 

  • Hsu N C, Jeong M J, Bettenhausen C, Sayer A M, Hansell R, Seftor C S, Huang J and Tsay S C 2013 Enhanced deep blue aerosol retrieval algorithm: the second generation; J. Geophys. Res. Atmos. 118 9296–9315.

    Article  Google Scholar 

  • Jin Q, Wei J and Yang Z L 2014 Positive response of Indian summer rainfall to Middle East dust; Geophys. Res. Lett. 41(11) 4068–4074.

    Article  Google Scholar 

  • Kahn R, Banerjee P and McDonald D 2001 The sensitivity of multiangle imaging to natural mixtures of aerosols over ocean; J. Geophys. Res. 106 18,219–18,238.

    Article  Google Scholar 

  • Kaskaoutis D G et al. 2012 Influence of anomalous dry conditions on aerosols over India: Transport, distributionand properties; J. Geophys. Res. 117 D09106, https://doi.org/10.1029/2011jd01731.

  • Kaskaoutis D G, Rashki A, Houssos E E, Goto D and Nastos P T 2014 Extremely high aerosol loading over Arabian Sea during June 2008: The specific role of the atmospheric dynamics and Sistan dust storms; Atmos. Environ. 94 374–384.

    Article  Google Scholar 

  • Kaufman and Nakajima T 1993 Effect of Amazon smoke on cloud microphysics and albedo-analysis from satellite imagery, J. Appl. Meteor. 32 729–744.

    Article  Google Scholar 

  • Kaufman Y J, Wald A E, Remer L A, Gao B C, Li R R and Flynn L 1997 The MODIS 2.1 μm Channel – Correlation with visible reflectance for use in remote sensing of aerosol; IEEE Trans. Geosci. Remote Sens. 35 1286–1298.

    Article  Google Scholar 

  • Kaufman Y J, Tanre D and Boucher O 2002 A satellite view of aerosols in the climate system; Nature 419 215–223.

    Article  Google Scholar 

  • Kaufman Y J, Koren I, Remer L A, Tanré D, Ginoux P and Fan S 2005 Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean; J. Geophys. Res. 110 D10S12, https://doi.org/10.1029/2003jd004436.

  • Kaufman Y J and Koren I 2006 Smoke and pollution aerosol effect on cloud cover; Science 313 655–658.

    Article  Google Scholar 

  • Kim M H, Omar A H, Tackett J L, Vaughan M A, Winker D M, Trepte C R, HuY, Liu Z, Poole L. R, Pitts M C, Kar J and Magill B E 2018 The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm; Atmos. Meas. Tech. 11 6107–6135, https://doi.org/10.5194/amt-11-6107-2018.

    Article  Google Scholar 

  • Krishnamurti T N and Ardanuy P 1980 The 10 to 20-day westward propagating mode and ‘Breaks in the Monsoons’; Tellus 32 15–26.

    Google Scholar 

  • Krishnamurthy V and Shukla J 2000 Intraseasonal and interannual variability of rainfall over India; J. Clim. 13 4366–4377.

    Article  Google Scholar 

  • Krishnamurthy V and Shukla J 2007 Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall; J. Clim. 20 3–20, https://doi.org/10.1175/jcli3981.1.

    Article  Google Scholar 

  • Kumar A, Zhang L and Wang W 2013 Sea surface temperature-precipitation relationship in different reanalyses; Mon. Weather Rev. 141 1118–1123.

    Article  Google Scholar 

  • Lau K M, Kim M K and Kim K M 2006 Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan plateau; Clim. Dyn. 26 855–864.

    Article  Google Scholar 

  • Lau W K M 2014 Desert dust and monsoon rainfall; Nat. Geosci., https://doi.org/10.1038/ngeo2115.

  • Lau W K M, Kim K M, Shi J J, Matsui T, Chin M, Tan Q, Peters-Lidard C and Tao W K 2017 Impacts of aerosol monsoon interaction on rainfall and circulation over northern India and the Himalaya foothills; Clim. Dyn. 49 1945–1960, https://doi.org/10.1007/s00382-016-3430-y.

    Article  Google Scholar 

  • Lebsock M D, Stephens G L and Kummerow C 2008 Multisensor satellite observations of aerosol effects on warm clouds; J. Geophys. Res., https://doi.org/10.1029/2008jd009876.

  • Levin Z, Teller A, Ganor E and Yin Y 2005 On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modelling study from the Mediterranean Israeli Dust Experiment campaign; J. Geophys. Res. 110 D20202, https://doi.org/10.1029/2005jd005810.

    Article  Google Scholar 

  • Levin Z and Cotton W R 2009 Aerosol pollution impact on precipitation: A scientific review; Springer, 386p.

  • Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F and Hsu N C 2013 The Collection 6 MODIS aerosol products over land and ocean; Atmos. Meas. Tech. 6(11) 2989–3034.

    Article  Google Scholar 

  • Levy R and Hsu C et al. 2015 MODIS Atmosphere L2 Aerosol Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, http://doi.org/10.5067/MODIS/MOD04 L2.006.

  • Mahawish A, Banerjee T, Broday D M, Misra A and Tripathi S N 2017 Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading; Remote Sens. Environ. 201 297–313.

    Article  Google Scholar 

  • Manoj M G, Devara P C S, Safai P D and Goswami B N 2011 Absorbing aerosol facilitate transition of Indian monsoon break to active spells; Clim. Dyn. 37 2181–2198.

    Article  Google Scholar 

  • Manoj M G, Devara P C S, Joseph S and Sahai A K 2012 Aerosol indirect effect during the aberrant Indian summer monsoon breaks of 2009; Atmos. Environ. 60 153–163.

    Article  Google Scholar 

  • Mohler O, Stetzer O and Schaefers S et al. 2003 Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA; Atmos. Chem. Phys. 3 211–223.

  • Nakajima T A, Higurashi K, Kawamoto and Penner J E 2001 A possible correlation between satellite-derived cloud and aerosol microphysical parameters; Geophys. Res. Lett. 28 1171–1174.

    Article  Google Scholar 

  • Omar A H, Winker D M, Vaughan M A, Hu, Trepte C R, Ferrare R A, Lee K-P, Hostetler C A, Kittaka C, Rogers R R, Kuehn R E and Liu Z 2009 The CALIPSO automated aerosol classification and lidar ratio selection algorithm; J. Atmos. Ocean. Technol. 26 1994–2014, http://dx.doi.org/10.1175/2009JTECHA1231.1.

    Article  Google Scholar 

  • Ortega S, Webster P J, Toma V and Chang H R 2017 Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere; Clim. Dyn., https://doi.org/10.1007/s00382-016-3503-y.

  • Pai D S, Latha Sridhar, Rajeevan M, Sreejith O P, Satbhai N S and Mukhopadhyay B 2014 Development of a new high spatial resolution (0.25°×0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region;Mausam 65 1–18.

  • Pai D S, Sridhar L and Ramesh Kumar M R 2016 Active and Break Events of Indian Summer Monsoon during 1901–2014; Clim. Dyn. 46(11) 3921–3939.

    Article  Google Scholar 

  • Panicker A S, Pandithurai G and Dipu S 2010 Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data; Atmos. Environ. 44 1937–1943.

    Article  Google Scholar 

  • Platnick S et al. 2015 MODIS Atmosphere L3 Monthly Product; NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA, http://doi.org/10.5067/MODIS/MYD08 M3.061.

  • Prijith S S, Rajeev K, Thampi B V, Nair S K and Mohan M 2013 Multi-year observations of the spatial and vertical distribution of aerosols and the genesis of abnormal variations in aerosol loading over the Arabian Sea during Asian Summer Monsoon Season; J. Atmos. Sol.-Terr. Phys. 105–106 142–151, http://dx.doi.org/10.1016/j.jastp.2013.09.009.

    Article  Google Scholar 

  • Quaas J, Boucher O and Bréon F M 2004 Aerosol indirect effects in POLDER satellite data and in the LMDZ GCM; J. Geophys. Res. 109, https://doi.org/10.1029/2003jd004317.

    Article  Google Scholar 

  • Quaas J, Boucher O and Lohmann U 2006 Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data; Atmos. Chem. Phys. 6 947–955, http://www.atmos-chem-phys.net/6/947/2006/.

  • Quaas J, Ming Y and Menon S et al. 2009 Aerosol indirect effects general circulation model intercomparison and evaluation with satellite data; Atmos. Chem. Phys. 9 8697–8717.

  • Raghavan K 1973 Break monsoon over India; Mon. Weather Rev. 101 33–43.

    Article  Google Scholar 

  • Rajeevan M, Gadgil S and Bhate J 2008 Active and break spells of the Indian summer monsoon; NCC Res. Rep. 7/2008, Natl. Clim. Cent., India Meteorological Department, Pune, http://www.imdpune. gov.in, 45p.

  • Rajeevan M, Gadgil S and Bhate J 2010 Active and break spells of the Indian summer monsoon; J. Earth Syst. Sci. 119(3) 229–247.

    Article  Google Scholar 

  • Rajeevan M 2012 Teleconnections of Monsoon; India Meteorological Department Monsoon Monograph 2 78–128.

  • Rajendran K, Krishnamurti T N, Misra V and Tao W-K 2004 An empirical cumulus parameterization scheme for a global spectral model; J. Meteor. Soc. Japan 82(4) 989–1006.

    Article  Google Scholar 

  • Rajendran K, Gadgil S and Sajani S 2018 Monsoon season local control on precipitation over warm tropical oceans;Meteor. Atmos. Phys., https://doi.org/10.1007/s00703-018-0649-7.

  • Ramage C S 1971 Monsoon Meteorology, Academic Press, pp. 33–34.

  • Ramamurthy K 1969 Some aspects of break in the Indian southwest monsoon during July and August; Forecasting Manual, India Meteorological Department Publication, FMU, Rep. 4, 18.3.

  • Ramanathan V et al. 2001 The Indian Ocean experiment: An integrated analysis of the climate forcing and effects of the Great Indo-Asian Haze; J. Geophys. Res. 106 28,371–28,398.

  • Ravi Kiran V, Rajeevan M, Vijaya Bhaskara Rao S and Prabhakara Rao N 2009 Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data; Geophys. Res. Lett. 36 L09706, http://dx.doi.org/10.1029/2008GL037135.

  • Remer L A et al. 2005 The MODIS aerosol algorithm, products and validation; J. Atmos. Sci. 62 947– 973, https://doi.org/10.1175/jas3385.1.

  • Remer L A, Mattoo S, Levy R C and Munchak L A 2013 MODIS 3 km aerosol product: Algorithm and global perspective; Atmos. Meas. Tech. 6 1829–1844, https://doi.org/10.5194/amt-6-1829-2013.

  • Romatschke U, Medina S and Houze R A 2010 Regional, seasonal, and diurnal variations of extreme convection in the South Asian region; J. Clim. 23 419–439, https://doi.org/10.1175/2009jcli3140.1.

    Article  Google Scholar 

  • Rosenfeld D 1999 TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall; Geophys. Res. Lett. 26 3105–3108.

    Article  Google Scholar 

  • Rosenfeld D 2000 Suppression of rain and snow by urban air pollution; Science 287 1793–1796.

    Article  Google Scholar 

  • Rosenfeld D, Rudich Y and Lahav R 2001 Desert dust suppressing precipitation: A possible desertification feedback loop; Proc. Natl. Acad. Sci. 98(11) 5975–5980.

    Article  Google Scholar 

  • Sajani S, Beegum S N and Moorthy K K 2007 The role of low-frequency intraseasonal variation in the anomalous Indian summer monsoon rainfall of 2002; J. Earth Syst. Sci. 116(2) 149–158.

    Article  Google Scholar 

  • Sajani S, Moorthy K K, Rajendran K and Nanjundiah R S 2012 Monsoon sensitivity to aerosol direct radiative forcing in the Community Atmospheric Model; J. Earth Syst. Sci. 121(4) 867–889.

    Article  Google Scholar 

  • Sajani S, Gadgil S, Francis P A and Rajeevan M 2015 Prediction of Indian rainfall during the summer monsoon season on the basis of links with equatorial Pacific and Indian Ocean climate indices; Environ. Res. Lett. 10(9), https://doi.org/10.1088/1748-9326/10/9/094004.

  • Sajani S, Rajendran K and Arya V B 2016 Precipitation-aerosol relationship over the Indian region during drought and excess summer monsoon years; Proc. SPIE 9882, 98820Q, https://doi.org/10.1117/12.22294479882.

    Article  Google Scholar 

  • Sayer A M, Hsu N C, Bettenhausen C and Jeong M J 2013 Validation and uncertainty estimates for MODIS Collection 6 ‘Deep Blue’ aerosol data; J. Geophys. Res.-Atmos. 118 7864–7872, https://doi.org/10.1002/jgrd.50600.

    Article  Google Scholar 

  • Sekiguchi M T, Suzuki K, Kawamoto A, Higurashi, Rosenfeld D, Sano I and Mukai S 2003 A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters; J. Geophys. Res. 108 4699, https://doi.org/10.1029/2002jd003359.

    Article  Google Scholar 

  • Shi Y J, Zhang J S, Reid E J, Hyer and Hsu N C 2013 Critical evaluation of the MODIS Deep Blue aerosol optical depth product for data assimilation over North Africa; Atmos. Meas. Tech. 6 949–969.

    Article  Google Scholar 

  • Shige S, Takayabu Y N, Kida S, Tao W K, Zeng X, Yokoyama C and L’Ecuyer T 2009 Spectral retrieval of latent heating profiles from TRMM PR Data. Part IV: Comparisons of lookup tables from two- and three-dimensional cloud-resolving model simulations; J. Climate 22 5577–5594.

    Article  Google Scholar 

  • Sikka D R and Gadgil S 1980 On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon; Mon. Weather Rev. 108 1840–1853.

    Article  Google Scholar 

  • Solmon F, Nair V S and Mallet M 2015 Increasing Arabian dust activity and the Indian summer monsoon; Atmos. Chem. Phys. Discuss. 15(4) 4879–4907, https://doi.org/10.5194/acpd-15-4879-2015.

    Article  Google Scholar 

  • Su J, Huang J, Fu Q, Minnis P, Ge J and J Bi 2008 Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements; Atmos. Chem. Phys. 8 2763–2771, https://doi.org/10.5194/acp-8-2763-2008.

    Article  Google Scholar 

  • Torres O, Tanskanen A and Veihelmann B et al. 2007 Aerosols and surface UV products from ozone monitoring instrument observations: An overview; J. Geophys. Res. 112 D24S47, https://doi.org/10.1029/2007jd008809.

  • Torres O, Ahn C and Chen Z 2013 Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations; Atmos. Meas. Tech. 6 3257–3270, 10.5194/amt-6-3257-2013.

    Article  Google Scholar 

  • Tripathi S N, Pattnaik A and Dey S 2007 Aerosol indirect effect over the Indo-Gangetic Basin; Atmos. Environ. 41(33) 7037 –7047.

    Article  Google Scholar 

  • Twomey S 1977 Influence of pollution on shortwave albedo of clouds; J. Atmos. Sci. 34 1149–1152.

    Article  Google Scholar 

  • Vinoj V, Rasch P J, Wang H L, Yoon J-H, Ma P-L, Landu B and Singh B 2014 Short term modulation of Indian summer monsoon rainfall by West Asian dust; J. Nat. Geosci. 7 308–313, https://doi.org/10.1038/ngeo2107.

    Article  Google Scholar 

  • Waliser D E 2006 Predictability of tropical intraseasonal variability; In: Predictability of Weather and Climate (eds) Palmer T and Hagedorn R, Cambridge University Press, 718p.

  • Wang W J, Huang P, Minnis Y, Hu J, Li Z, Huang J K, Ayers and Wang T 2010 Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A‐Train data during the Pacific dust experiment; J. Geophys. Res. 115 D00H35, https://doi.org/10.1029/2010jd014109.

  • Wang B and Xie X 1997 A model for the Boreal Summer; J. Atmos. Sci. 54 72–86.

    Article  Google Scholar 

  • Webster P J et al. 1998 Monsoons: Processes, predictability, and the prospects for prediction; J. Geophys. Res.-Oceans 103 14,451–14,510, https://doi.org/10.1029/97jc02719.

  • Yanai M, Esbensen S and Chu J H 1973 Determination of bulk properties of tropical cloud clusters from large scale heat and moisture budgets; J. Atmos. Sci. 30 611–627.

    Article  Google Scholar 

  • Zhang G J and Mu M 2005 Simulation of the Madden Julian oscillation in the NCAR CCM3 using a revised Zhang–Mcfarlane convection parameterization scheme; J. Clim. 18 4046–4064, https://doi.org/10.1175/jcli3508.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge rainfall dataset from IMD and ECMWF for ERA-Interim datasets. The authors are grateful to the anonymous reviewer for his invaluable suggestions which improved the scientific basis of our study and to the editor for the opportunity to revise the manuscript extensively. The first author thanks University Grants Commission (UGC) for the Fellowship and AcSIR for the support. She also acknowledges the help of Mr Suraj Ravindran and Ms Chaithra S T in preparing figures. This work was supported by the NCAP project of CSIR-4PI funded by MoEFCC, Govt. of India (GAP-1009).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: Sajani Surendran, Kavirajan Rajendran, Arya V B. Methodology, computations and visualization: Arya V B, Sajani Surendran. Discussion and interpretation of results: Sajani Surendran, Kavirajan Rajendran, Arya V B. Drafting the manuscript: Arya V B, Sajani Surendran. Revision of manuscript: Arya V B, Sajani Surendran, Kavirajan Rajendran.

Corresponding author

Correspondence to V B Arya.

Additional information

Communicated by Suresh Babu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, V.B., Surendran, S. & Rajendran, K. On the build-up of dust aerosols and possible indirect effect during Indian summer monsoon break spells using recent satellite observations of aerosols and cloud properties. J Earth Syst Sci 130, 42 (2021). https://doi.org/10.1007/s12040-020-01526-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01526-6

Keywords

Navigation