Skip to main content
Log in

Assembly and Disassembly of the Micropatterned Collagen Sheets Containing Cells for Location-Based Cellular Function Analysis

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The liver has complex microenvironments, where parenchymal hepatocytes and non-parenchymal cells coexist. Hepatocytes exhibit different metabolic functions depending on their location by the oxygen gradient and the transcriptional changes of genes, which is called liver zonation. Three-dimensional (3D) liver tissue engineering has reproduced the complex microenvironments, but there is a limitation in analyzing them by location. In this study, a novel 3D tissue-level hepatic cell culture platform is developed via stacking the manipulable collagen sheets to spatially analyze the reconstructed metabolic zonation. The controlled assembly of the sheets containing hepatocytes and endothelial cells, respectively, creates a 3D co-culture environment that improves hepatic function. In addition, the sheet micropatterning can be used to control the accessibility of oxygen and nutrients in the stacked sheets. The disassembly of the stacked sheets enables a layer-by-layer analysis and allows us to confirm the metabolic zonation qualitatively. A demonstration of acetaminophen-induced liver injury using the stacked sheets shows the improved drug sensitivity by co-culture and chemical induction and presents the quantitative results of the different cellular responses to the drug by layers according to metabolic zonation. Therefore, this platform is expected to be used for an in-depth analysis of drug toxicity in complex tissues via spatial analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dash, A., Inman, W., Hoffmaster, K., Sevidal, S., Kelly, J., Obach, R.S., Griffith, L.G., Tannenbaum, S.R.: Liver tissue engineering in the evaluation of drug safety. Expert Opin. Drug Metab. Toxicol. 5, 1159–1174 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Teutsch, H.F.: The modular microarchitecture of human liver. Hepatology 42, 317–325 (2005)

    PubMed  Google Scholar 

  3. Kietzmann, T.: Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11, 622–630 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen, J.W., Bhatia, S.N.: Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82, 253–262 (2003)

    CAS  PubMed  Google Scholar 

  5. Allen, J.W., Khetani, S.R., Bhatia, S.N.: In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84, 110–119 (2005)

    CAS  PubMed  Google Scholar 

  6. McCarty, W.J., Usta, O.B., Yarmush, M.L.: A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci. Rep. 6, 26868 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang, Y.B.A., Eo, J., Mert, S., Yarmush, M.L., Usta, O.B.: Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci. Rep. 8, 8951 (2018)

    PubMed  PubMed Central  Google Scholar 

  8. Baker, B.M., Chen, C.S.: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012)

    Article  CAS  Google Scholar 

  9. Nichol, J.W., Khademhosseini, A.: Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5, 1312–1319 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tostões, R.M., Leite, S.B., Serra, M., Jensen, J., Björquist, P., Carrondo, M.J., Brito, C., Alves, P.M.: Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology 55, 1227–1236 (2012)

    PubMed  Google Scholar 

  11. Bell, C.C., Hendriks, D.F.G., Moro, S.M., Ellis, E., Walsh, J., Renblom, A., Puigvert, L.F., Dankers, A.C., Jacobs, F., Snoeys, J., Sison-Young, R.L., Jenkins, R.E., Nordling, Å., Mkrtchian, S., Park, B.K., Kitteringham, N.R., Goldring, C.E.P., Lauschke, V.M., Ingelman-Sundberg, M.: Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci. Rep. 6, 25187 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaskell, H., Sharma, P., Colley, H.E., Murdoch, C., Williams, D.P., Webb, S.D.: Characterization of a functional C3A liver spheroid model. Toxicol. Res. 5, 1053–1065 (2016)

    CAS  Google Scholar 

  13. Drury, J.L., Mooney, D.J.: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003)

    CAS  PubMed  Google Scholar 

  14. Tibbitt, M.W., Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Geckil, H., Xu, F., Zhang, X., Moon, S., Demirci, U.: Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5, 469–484 (2010)

    CAS  PubMed  Google Scholar 

  16. Erro, E., Bundy, J., Massie, I., Chalmers, S.-A., Gautier, A., Gerontas, S., Hoare, M., Sharratt, P., Choudhury, S., Lubowiecki, M., Llewellyn, I., Legallais, C., Fuller, B., Hodgson, H., Selden, C.: Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system. Biores. Open Access 2, 1–11 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, L., Qiu, M., Yang, Q., Li, Y., Huang, G., Lin, M., Lu, T.J., Xu, F.: Fabrication of microscale hydrogels with tailored microstructures based on liquid bridge phenomenon. ACS Appl. Mater. Interfaces 7, 11134–11140 (2015)

    PubMed  Google Scholar 

  18. Zhong, M., Wei, D., Yang, Y., Sun, J., Chen, X., Guo, L., Wei, Q., Wan, Y., Fan, H., Zhang, X.: Vascularization in engineered tissue construct by assembly of cellular patterned micromodules and degradable microspheres. ACS Appl. Mater. Interfaces 9, 3524–3534 (2017)

    CAS  PubMed  Google Scholar 

  19. Onoe, H., Okitsu, T., Itou, A., Kato-Negishi, M., Gojo, R., Kiriya, D., Sato, K., Miura, S., Iwanaga, S., Kuribayashi-Shigetomi, K., Matsunaga, Y.T., Shimoyama, Y., Takeuchi, S.: Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013)

    CAS  PubMed  Google Scholar 

  20. Leong, M.F., Toh, J.K., Du, C., Narayanan, K., Lu, H.F., Lim, T.C., Wan, A.C., Ying, J.Y.: Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4, 2353 (2013)

    PubMed  Google Scholar 

  21. Kalisky, J., Raso, J., Rigothier, C., Rémy, M., Siadous, R., Bareille, R., Fricain, J.-C., Amedée-Vilamitjana, J., Oliveira, H., Devillard, R.: An easy-to-use and versatile method for building cell-laden microfibres. Sci. Rep. 6, 33328 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Derda, R., Laromaine, A., Mammoto, A., Tang, S.K., Mammoto, T., Ingber, D.E., Whitesides, G.M.: Paper-supported 3D cell culture for tissue-based bioassays. Proc. Natl. Acad. Sci. USA 106, 18457–18462 (2009)

    CAS  PubMed  Google Scholar 

  23. Lee, W., Bae, C.Y., Kwon, S., Son, J., Kim, J., Jeong, Y., Yoo, S.-S., Park, J.-K.: Cellular hydrogel biopaper for patterned 3D cell culture and modular tissue reconstruction. Adv. Healthc. Mater. 1, 635–639 (2012)

    CAS  PubMed  Google Scholar 

  24. Son, J., Bae, C.Y., Park, J.-K.: Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds. Biotechnol. J. 11, 585–591 (2016)

    CAS  PubMed  Google Scholar 

  25. Simon, K.A., Mosadegh, B., Minn, K.T., Lockett, M.R., Mohammady, M.R., Boucher, D.M., Hall, A.B., Hillier, S.M., Udagawa, T., Eustace, B.K., Whitesides, G.M.: Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system. Biomaterials 95, 47–59 (2016)

    CAS  PubMed  Google Scholar 

  26. Bae, C.Y., Min, M.-K., Kim, H., Park, J.-K.: Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters. Lab Chip 14, 2183–2190 (2014)

    CAS  PubMed  Google Scholar 

  27. Son, J., Bae, C.Y., Park, J.-K.: Construction of modular hydrogel sheets for micropatterned macro-scaled 3D cellular architecture. J. Vis. Exp. 107, e53475 (2016)

    Google Scholar 

  28. Son, J., Bang, M.S., Park, J.-K.: Hand-maneuverable collagen sheet with micropatterns for 3D modular tissue engineering. ACS Biomater. Sci. Eng. 5, 339–345 (2019)

    CAS  PubMed  Google Scholar 

  29. Wierling, C.: Bridging the gap between metabolic liver processes and functional tissue structure by integrated spatiotemporal modeling applied to hepatic ammonia detoxification. Hepatology 60, 1823–1825 (2014)

    CAS  PubMed  Google Scholar 

  30. Nelson, L.J., Navarro, M., Treskes, P., Samuel, K., Tura-Ceide, O., Morley, S.D., Hayes, P.C., Plevris, J.N.: Acetaminophen cytotoxicity is ameliorated in a human liver organotypic co-culture model. Sci. Rep. 5, 17455 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y., Su, W., Wang, L., Jiang, L., Liu, Y., Hui, L., Qin, J.: Paper supported long-term 3D liver co-culture model for the assessment of hepatotoxic drugs. Toxicol. Res. 7, 13–21 (2018)

    CAS  Google Scholar 

  32. Dunn, J.C., Yarmush, M.L., Koebe, H.G., Tompkins, R.G.: Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 3, 174–177 (1989)

    CAS  PubMed  Google Scholar 

  33. Moghe, P.V., Berthiaume, F., Ezzell, R.M., Toner, M., Tompkins, R.G., Yarmush, M.L.: Culture matrix configuration and composition in the maintenance of hepatocyte polarity and function. Biomaterials 17, 373–385 (1996)

    CAS  PubMed  Google Scholar 

  34. Kim, K., Ohashi, K., Utoh, R., Kano, K., Okano, T.: Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33, 1406–1413 (2012)

    CAS  PubMed  Google Scholar 

  35. Kim, K., Utoh, R., Ohashi, K., Kikuchi, T., Okano, T.: Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro. J. Tissue Eng. Regen. Med. 11, 2071–2080 (2017)

    CAS  PubMed  Google Scholar 

  36. van Duinen, V., Trietsch, S.J., Joore, J., Vulto, P., Hankemeier, T.: Microfluidic 3D cell culture: from tools to tissue models. Curr. Opin. Biotechnol. 35, 118–126 (2015)

    PubMed  Google Scholar 

  37. Kaarj, K., Ngo, J., Loera, C., Akarapipad, P., Cho, S., Yoon, J.-Y.: Simple paper-based liver cell model for drug screening. BioChip J. 14, 218–229 (2020)

    CAS  Google Scholar 

  38. Ben-Moshe, S., Itzkovitz, S.: Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16, 395–410 (2019)

    PubMed  Google Scholar 

  39. Fouassier, L., Beaussier, M., Schiffer, E., Rey, C., Barbu, V., Mergey, M., Wendum, D., Callard, P., Scoazec, J.-Y., Lasnier, E., Stieger, B., Lienhart, A., Housset, C.: Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G25–G35 (2007)

    CAS  PubMed  Google Scholar 

  40. Deng, J., Zhang, X., Chen, Z., Luo, Y., Lu, Y., Liu, T., Wu, Z., Jin, Y., Zhao, W., Lin, B.: A cell lines derived microfluidic liver model for investigation of hepatotoxicity induced by drug–drug interaction. Biomicrofluidics 13, 024101 (2019)

    PubMed  PubMed Central  Google Scholar 

  41. Westerink, W.M., Schoonen, W.G.: Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol. In Vitro 21, 1581–1591 (2007)

    CAS  PubMed  Google Scholar 

  42. Gerets, H.H.J., Tilmant, K., Gerin, B., Chanteux, H., Depelchin, B.O., Dhalluin, S., Atienzar, F.A.: Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28, 69–87 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parikh, H., Pandita, N., Khanna, A.: Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells. Pharm. Biol. 53, 975–984 (2015)

    CAS  PubMed  Google Scholar 

  44. Viswanathan, P., Sharma, Y., Gupta, P., Gupta, S.: Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration. Cell Prolif. 51, e12445 (2018)

    PubMed  PubMed Central  Google Scholar 

  45. Ramaiahgari, S.C., Den Braver, M.W., Herpers, B., Terpstra, V., Commandeur, J.N., van de Water, B., Price, L.S.: A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch. Toxicol. 88, 1083–1095 (2014)

    CAS  PubMed  Google Scholar 

  46. Njälsson, R., Norgren, S.: Physiological and pathological aspects of GSH metabolism. Acta Paediatr. 94, 132–137 (2005)

    PubMed  Google Scholar 

  47. Antonenkov, V.D., Grunau, S., Ohlmeier, S., Hiltunen, J.K.: Peroxisomes are oxidative organelles. Antioxid. Redox Signal. 13, 525–537 (2010)

    CAS  PubMed  Google Scholar 

  48. Cruzat, V., Rogero, M.M., Keane, K.N., Curi, R., Newsholme, P.: Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564 (2018)

    PubMed Central  Google Scholar 

  49. Kwee, J.K.: A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde. BioMed Res. Int. 2014, 209845 (2014)

    PubMed  PubMed Central  Google Scholar 

  50. Yan, T., Lu, L., Xie, C., Chen, J., Peng, X., Zhu, L., Wang, Y., Li, Q., Shi, J., Zhou, F., Hu, M., Liu, Z.: Severely impaired and dysregulated cytochrome P450 expression and activities in hepatocellular carcinoma: implications for personalized treatment in patients. Mol. Cancer Ther. 14, 2874–2886 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Birchmeier, W.: Orchestrating Wnt signalling for metabolic liver zonation. Nat. Cell Biol. 18, 463–465 (2016)

    CAS  PubMed  Google Scholar 

  52. Ahn, J., Ahn, J.-H., Yoon, S., Nam, Y.S., Son, M.-Y., Oh, J.-H.: Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity. J. Biol. Eng. 13, 22 (2019)

    PubMed  PubMed Central  Google Scholar 

  53. Croce, S., Peloso, A., Zoro, T., Avanzini, M.A., Cobianchi, L.: A hepatic scaffold from decellularized liver tissue: food for thought. Biomolecules 9, 813 (2019)

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2019R1A2B5B03070494 and NRF-2015M3A9B3028685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Kyun Park.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1804 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Kim, HH., Lee, JH. et al. Assembly and Disassembly of the Micropatterned Collagen Sheets Containing Cells for Location-Based Cellular Function Analysis. BioChip J 15, 77–89 (2021). https://doi.org/10.1007/s13206-021-00007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00007-2

Keywords

Navigation