Skip to main content
Log in

Neuroscience Research using Small Animals on a Chip: From Nematodes to Zebrafish Larvae

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Implementation of microfluidic technology to study small animal models such as Caenorhabditis elegans worms (soil-dwelling nematodes), Drosophila melanogaster (fruit fly) and larvae of Danio rerio (zebrafish) provides great opportunities for in vivo quantification of neuronal activities and behavioral responses. By controlling the internal environment, microfluidic devices can manipulate animal models with precision and cause minimal damage to the specimen. Due to these advantages, microfluidic devices have been applied to high-throughput drug screening, high-throughput brain-wide activity mapping, analyzing animals’ neuronal and behavioral responses to different external stimuli, microinjection, and neuronal regeneration. In this paper, we review different microfluidic devices and techniques that allow the manipulation of small animal models to study brain functions and behavioral responses. Furthermore, biomedical applications of microfluidic systems, technical challenges, and future directions in the whole brain and animal research on a chip will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stirman, J.N., Brauner, M., Gottschalk, A., Lu, H.: High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J. Neurosci. Methods 191, 90–93 (2010)

    PubMed  PubMed Central  Google Scholar 

  2. Leifer, A.M., Fang-Yen, C., Gershow, M., Alkema, M.J., Samuel, A.D.T.: Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nat. Methods 8, 147–152 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gilleland, C.L., Rohde, C.B., Zeng, F., Yanik, M.F.: Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat. Protoc. 5, 1888–1902 (2010)

    CAS  PubMed  Google Scholar 

  4. Park, S., et al.: Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PLoS ONE 3, 1–5 (2008)

    Google Scholar 

  5. Gupta, B. P. & Rezai, P. Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 7, (2016).

  6. Qiu, Z., et al.: An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. Biomicrofluidics 9, 1–13 (2015)

    CAS  Google Scholar 

  7. Leung, J.C.K., Hilliker, A.J., Rezai, P.: An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster. Lab Chip 16, 709–719 (2016)

    CAS  PubMed  Google Scholar 

  8. Zabihihesari, A., Hilliker, A.J., Rezai, P.: Fly-on-a-chip: microfluidics for Drosophila melanogaster studies. Integr. Biol. (Camb) 11, 425–443 (2019)

    Google Scholar 

  9. Ghaemi, R., Rezai, P., Nejad, F. R. & Selvaganapathy, P. R. Characterization of microfluidic clamps for immobilizing and imaging of Drosophila melanogaster larva’s central nervous system. Biomicrofluidics 11, (2017).

  10. Khalili, A., Rezai, P.: Microfluidic devices for embryonic and larval zebrafish studies. Brief. Funct. Genomics 18, 419–432 (2019)

    PubMed  Google Scholar 

  11. Bischel, L.L., Mader, B.R., Green, J.M., Huttenlocher, A., Beebe, D.J.: Zebrafish Entrapment by Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 13, 1732–1736 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Candelier, R., et al.: A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish. Sci. Rep. 5, 1–10 (2015)

    Google Scholar 

  13. Nady, A., Peimani, A.R., Zoidl, G., Rezai, P.: A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae. Lab Chip 17, 4048–4058 (2017)

    CAS  PubMed  Google Scholar 

  14. Crane, M.M., Chung, K., Stirman, J., Lu, H.: Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10, 1509–1517 (2010)

    CAS  PubMed  Google Scholar 

  15. Yang, F., Gao, C., Wang, P., Zhang, G.J., Chen, Z.: Fish-on-a-chip: Microfluidics for zebrafish research. Lab Chip 16, 1106–1125 (2016)

    CAS  PubMed  Google Scholar 

  16. Nguyen, J.P., et al.: Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 113, E1074–E1081 (2016)

    CAS  PubMed  Google Scholar 

  17. Ghannad-Rezaie, M., Wang, X., Mishra, B., Collins, C. & Chronis, N. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS One 7, (2012).

  18. Lin, X., et al.: High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip 15, 680–689 (2015)

    CAS  PubMed  Google Scholar 

  19. Lockery, S. R. et al. A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans. Lab Chip 12, 2211–2220 (2012).

  20. Hong, S.G., Lee, P., Baraban, S.C., Lee, L.P.: A novel long-term, multi-channel and non-invasive electrophysiology platform for Zebrafish. Sci. Rep. 6, 1–10 (2016)

    Google Scholar 

  21. Hu, L., et al.: Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device. Anal. Chim. Acta 887, 155–162 (2015)

    CAS  PubMed  Google Scholar 

  22. Van Giesen, L., Neagu-Maier, G.L., Kwon, J.Y., Sprecher, S.G.: A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons. Nat. Protoc. 11, 2389–2400 (2016)

    PubMed  Google Scholar 

  23. Vidal-Gadea, A., et al.: Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. Elife 4, 1–20 (2015)

    Google Scholar 

  24. Ghaemi, R., Rezai, P., Iyengar, B.G., Selvaganapathy, P.R.: Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus. Lab Chip 15, 1116–1122 (2015)

    CAS  PubMed  Google Scholar 

  25. Peimani, A.R., Zoidl, G., Rezai, P.: A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae. Biomicrofluidics 12, 1–14 (2018)

    Google Scholar 

  26. Rezai, P., Siddiqui, A., Selvaganapathy, P.R., Gupta, B.P.: Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip 10, 220–226 (2010)

    CAS  PubMed  Google Scholar 

  27. Mani, K., Hsieh, Y. C., Panigrahi, B. & Chen, C. Y. A non-invasive light driven technique integrated microfluidics for zebrafish larvae transportation. Biomicrofluidics 12, (2018).

  28. Panigrahi, B. & Chen, C. Y. Microfluidic transportation control of larval zebrafish through optomotor regulations under a pressure-driven flow. Micromachines 10, (2019).

  29. Vanwalleghem, G., Schuster, K., Taylor, M.A., Favre-Bulle, I.A., Scott, E.K.: Brain-wide mapping of water flow perception in zebrafish. J. Neurosci. 40, 4130–4144 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. San-Miguel, A. & Lu, H. Microfluidics as a tool for C. elegans research. WormBook 1–19 (2013). doi:https://doi.org/10.1895/wormbook.1.162.1

  31. Khalili, A., Youssef, K., Zoidl, G. & Rezai, P. Neurotoxin-induced impairment and neuroprotective-based recovery of electrotactic locomotion in zebrafish larvae as a model for neurobehavioral studies in Parkinson’s disease. 22nd Int. Conf. Miniaturized Syst. Chem. Life Sci. MicroTAS 2018 3, 1553–1556 (2018).

  32. Zhao, X. et al. Microfluidic chip-based C. elegans microinjection system for investigating cell-cell communication in vivo. Biosens. Bioelectron. 50, 28–34 (2013).

  33. Chokshi, T. V., Ben-Yakar, A. & Chronis, N. CO2 and compressive immobilization of C. elegans on-chip. Lab Chip 9, 151–157 (2009).

  34. Mondal, S., Ahlawat, S., Rau, K., Venkataraman, V., Koushika, S.P.: Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic 12, 372–385 (2011)

    CAS  PubMed  Google Scholar 

  35. Krajniak, J. & Lu, H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10, 1862–1868 (2010).

  36. Chuang, H.S., Chen, H.Y., Chen, C.S., Chiu, W.T.: Immobilization of the nematode caenorhabditis elegans with addressable light-induced heat knockdown (ALINK). Lab Chip 13, 2980–2989 (2013)

    CAS  PubMed  Google Scholar 

  37. Yan, Y., et al.: A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens. Microsc. Microanal. 20, 141–151 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghaemi, R., Tong, J., Selvaganapathy, P. R. & Gupta, B. P. Microfluidic device for microinjection of caenorhab-ditis elegans. 17th Int. Conf. Miniaturized Syst. Chem. Life Sci. MicroTAS 2013 3, 1821–1823 (2013).

  39. Kopito, R.B., Levine, E.: Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab Chip 14, 764–770 (2014)

    CAS  PubMed  Google Scholar 

  40. Chung, K., Lu, H.: Automated high-throughput cell microsurgery on-chip. Lab Chip 9, 2764–2766 (2009)

    CAS  PubMed  Google Scholar 

  41. Fuad, N.M., Kaslin, J., Wlodkowic, D.: Lab-on-a-Chip imaging micro-echocardiography (iμEC) for rapid assessment of cardiovascular activity in zebrafish larvae. Sensors Actuators, B Chem. 256, 1131–1141 (2018)

    CAS  Google Scholar 

  42. Mondal, S., Ahlawat, S. & Koushika, S. P. Simple microfluidic devices for in vivo imaging of C. elegans, drosophila and zebrafish. J. Vis. Exp. 1–9 (2012). doi:https://doi.org/10.3791/3780

  43. Chronis, N., Zimmer, M., Bargmann, C.I.: Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 4, 727–731 (2007)

    CAS  PubMed  Google Scholar 

  44. Ayamura, Y. et al. Local guiding of C. Elegans inside micro-channel for injection operation. 2015 IEEE/SICE Int. Symp. Syst. Integr. SII 2015 952–955 (2016). doi:https://doi.org/10.1109/SII.2015.7405154

  45. Zabihihesari, A., Hilliker, A.J., Rezai, P.: Localized microinjection of intact: Drosophila melanogaster larva to investigate the effect of serotonin on heart rate. Lab Chip 20, 343–355 (2020)

    CAS  PubMed  Google Scholar 

  46. Zhang, G. et al. An integrated microfluidic system for zebrafish larva organs injection. Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc. 2017-Janua, 8563–8566 (2017).

  47. Pardo-Martin, C., Chang, T. Y., Allalou, A., Wählby, C. & Yanik, M. F. High-throughput cellular-resolution in vivo vertebrate screening. 15th Int. Conf. Miniaturized Syst. Chem. Life Sci. 2011, MicroTAS 2011 3, 1557–1559 (2011).

  48. Kohli, V., Elezzabi, A.Y.: Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser’s effect on short- and long-term development. BMC Biotechnol. 8, 1–20 (2008)

    Google Scholar 

  49. Gokce, S.K., et al.: A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans. Sci. Rep. 7, 1–12 (2017)

    Google Scholar 

  50. Guo, S.X., et al.: Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods 5, 531–533 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Samara, C., et al.: Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl. Acad. Sci. USA 107, 18342–18347 (2010)

    CAS  PubMed  Google Scholar 

  52. Zeng, F., Rohde, C.B., Yanik, M.F.: Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8, 653–656 (2008)

    CAS  PubMed  Google Scholar 

  53. Martin, S.M., O’Brien, G.S., Portera-Cailliau, C., Sagasti, A.: Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137, 3985–3994 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tong, Z., et al.: A microfluidic neuronal platform for neuron axotomy and controlled regenerative studies. RSC Adv. 5, 73457–73466 (2015)

    CAS  Google Scholar 

  55. Johari, S., Nock, V., Alkaisi, M. M. & Wang, W. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Lab Chip 13, 1699–1707 (2013).

  56. Kim, D., Alvarez, M., Lechuga, L.M., Louis, M.: Species-specific modulation of food-search behavior by respiration and chemosensation in Drosophila larvae. Elife 6, 1–23 (2017)

    CAS  Google Scholar 

  57. Navawongse, R., et al.: Drosophila learn efficient paths to a food source. Neurobiol. Learn. Mem. 131, 176–181 (2016)

    PubMed  Google Scholar 

  58. Erickstad, M., Hale, L.A., Chalasani, S.H., Groisman, A.: A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia. Lab Chip 15, 857–866 (2015)

    CAS  PubMed  Google Scholar 

  59. Larsch, J., Ventimiglia, D., Bargmann, C. I. & Albrecht, D. R. High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. 110, (2013).

  60. Hu, C. et al. NeuroChip: A Microfluidic Electrophysiological Device for Genetic and Chemical Biology Screening of Caenorhabditis elegans Adult and Larvae. PLoS One 8, (2013).

  61. Wu, J., Zheng, G., Lee, L.M.: Optical imaging techniques in microfluidics and their applications. Lab Chip 12, 3566–3575 (2012)

    CAS  PubMed  Google Scholar 

  62. Paiè, P., Martínez Vázquez, R., Osellame, R., Bragheri, F. & Bassi, A. Microfluidic Based Optical Microscopes on Chip. Cytom. Part A 93, 987–996 (2018).

  63. Lin, X., et al.: High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nat. Commun. 9, 1–12 (2018)

    Google Scholar 

  64. Chalasani, S.H., et al.: Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007)

    CAS  PubMed  Google Scholar 

  65. Tong, J., Rezai, P., Salam, S., Selvaganapathy, P.R., Gupta, B.P.: Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans’ locomotion. J. Vis. Exp. (2013). https://doi.org/10.3791/50226

    Article  PubMed  PubMed Central  Google Scholar 

  66. Si, G., et al.: Structured odorant response patterns across a complete olfactory receptor neuron population. Neuron 101, 950-962.e7 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cong, L., et al.: Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). Elife 6, 1–20 (2017)

    Google Scholar 

  68. McCormick, K. E., Gaertner, B. E., Sottile, M., Phillips, P. C. & Lockery, S. R. Microfluidic devices for analysis of spatial orientation behaviors in semi-restrained Caenorhabditis elegans. PLoS One 6, (2011).

  69. Bahadorani, S., Hilliker, A.J.: Biological and behavioral effects of heavy metals in drosophila melanogaster adults and larvae. J. Insect Behav. 22, 399–411 (2009)

    Google Scholar 

  70. Leung, J.C.K., Taylor-Kamall, R.W., Hilliker, A.J., Rezai, P.: Agar-polydimethylsiloxane devices for quantitative investigation of oviposition behaviour of adult drosophila melanogaster. Biomicrofluidics 9, 1–15 (2015)

    Google Scholar 

  71. Peimani, A. R., Zoidl, G. & Rezai, P. A Microfluidic Device for Investigation of Zebrafish Rheotaxis at Larval Stage. Under Prep. 1–6 (2017).

  72. Zheng, C., et al.: Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos. Chem. Commun. 50, 981–984 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

E.E.J. is supported by a NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica E. Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Abraham, A., Garg, J. et al. Neuroscience Research using Small Animals on a Chip: From Nematodes to Zebrafish Larvae. BioChip J 15, 42–51 (2021). https://doi.org/10.1007/s13206-021-00012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00012-5

Keywords

Navigation