Skip to main content
Log in

On Curvature and Torsion in Courant Algebroids

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the graded geometric point of view of curvature and torsion of Q-manifolds (differential graded manifolds). In particular, we get a natural graded geometric definition of Courant algebroid curvature and torsion, which correctly restrict to Dirac structures. Depending on an auxiliary affine connection K, we introduce the K-curvature and K-torsion of a Courant algebroid connection. These are conventional tensors on the body. Finally, we compute their Ricci and scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. For a convenient track of the type of indices, we temporarily use, e.g., \(\Gamma _\mu {}^{s_\alpha }{}_{s_\beta }\) to denote the component contracting with \(s_\alpha \frac{\partial }{\partial s_\beta }\) in the definition of the covariant derivative, where \(\alpha \) can be \(\mu \) up and \(\mu \) down.

References

  1. Liu, Z.-J., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45(3), 547–574 (1997)

    Article  MathSciNet  Google Scholar 

  2. Gualtieri, M.: Branes on Poisson Varieties, The Many Facets of Geometry: A Tribute to Nigel Hitchin (2007)

  3. Hohm, O., Zwiebach, B.: Towards an invariant geometry of double field theory. J. Math. Phys. 54, 032303 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Jurčo, B., Vysoký, J.: Courant algebroid connections and string effective actions. Noncommut. Geom. Phys. 4, ed. by: Y.Maeda, H. Moriyoshi, M. Kotani S. Watamura, World Scientific, pp. 211-265 211 (2017)

  5. Garcia-Fernandez, M.: Torsion-free generalized connections and heterotic supergravity. Commun. Math. Phys. 332(1), 89 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry I: type II theories. JHEP 1111, 091 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry II: \(E_{d(d)} \times {\mathbb{R}}^+\) and M theory. JHEP 1403, 019 (2014)

    Article  ADS  Google Scholar 

  8. Hull, C., Zwiebach, B.: Double field theory. JHEP 0909, 099 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hull, C., Zwiebach, B.: The Gauge algebra of double field theory and Courant brackets. JHEP 0909, 090 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hohm, O., Hull, C., Zwiebach, B.: Background independent action for double field theory. JHEP 1007, 016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. In: Voronov, T. (ed.) Quantization, Poisson Brackets and Beyond, Contemporary Mathematics, vol. 315. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  12. Ševera, P.: Letters to Alan Weinstein about Courant algebroids, arXiv:1707.00265 [math.DG]

  13. Vinogradov, A.M.: Unification of the Schouten and Nijenhuis brackets, cohomology, and superdifferential operators. Mat. Zametki 47(6), 138 (1990)

    MathSciNet  MATH  Google Scholar 

  14. Bonelli, G., Zabzine, M.: From current algebras for p-branes to topological M-theory. JHEP 0509, 015 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Deser, A., Stasheff, J.: Even symplectic supermanifolds and double field theory. Commun. Math. Phys. 339(3), 1003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Deser, A., Sämann, C.: Extended Riemannian geometry I: local double field theory. Ann. Henri Poincaré 19, 2297 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cattaneo, A.S., Schaetz, F.: Introduction to supergeometry. Rev. Math. Phys. 23(06), 669–690 (2011)

    Article  MathSciNet  Google Scholar 

  18. Quillen, D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)

    Article  MathSciNet  Google Scholar 

  19. Mehta, R.A.: Q-algebroids and their cohomology. J. Symplectic Geom. 7(3), 263–293 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kotov, A., Strobl, T.: Characteristic classes associated to Q-bundles. Int. J. Geom. Methods Mod. Phys. 12(01), 1550006 (2014)

    Article  MathSciNet  Google Scholar 

  21. Grützmann, M., Strobl, T.: General Yang–Mills type gauge theories for \(p\)-form gauge fields: from physics-based ideas to a mathematical framework or From Bianchi identities to twisted Courant algebroids. Int. J. Geom. Methods Mod. Phys. 12, 1550009 (2014)

    Article  MathSciNet  Google Scholar 

  22. Roytenberg, D.: AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 79, 143–159 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Vaintrob, A.Y.: Lie algebroids and homological vector fields. Russ. Math. Surv. 52, 428 (1997)

    Article  MathSciNet  Google Scholar 

  24. Abad, C., Crainic, M.: Representations up to homotopy of Lie algebroids. J. für die reine und angewandte Mathematik (Crelles J.) 663, 91–126 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Gualtieri, M.: Generalized complex geometry, arXiv preprint arXiv:math/0401221 (2004)

  26. Ševera, P., Valach, F.: Ricci flow, Courant algebroids, and renormalization of Poisson–Lie T-duality. Lett. Math. Phys. 107(10), 1823 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ševera, P.: Some title containing the words “homotopy” and “symplectic”, eg this one. arXiv preprint arXiv:math/0105080 (2001)

Download references

Acknowledgements

We are grateful to Christian Sämann for many discussions at an early stage of this research. P.A. and A.D. thank the University of Florence for hospitality. F.B. and A.D. thank the INFN sezione di Torino for hospitality. The research of A.D. was supported by OP RDE Project No. CZ.02.2.69/0.0/0.0/16_027/0008495, International Mobility of Researchers at Charles University, as well as by the COST action MP 1405 Quantum structure of spacetime and the Corfu Summer Institute 2019 at EISA. The work of P.A. is partially supported by INFN, CSN4, Iniziativa Specifica GSS, and by Università del Piemonte Orientale. P.A. is affiliated to INdAM, GNFM (Istituto Nazionale di Alta Matematica, Gruppo Nazionale di Fisica Matematica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bonechi.

Additional information

Communicated by Ruben Minasian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Generalized Connection on \({{\mathbb {T}}}[1]M\) and Torsion Components

In this appendix, we collect our conventions on the component form of a generalized connection on \(E = {{\mathbb {T}}}[1]M\) which are used in the main text, in particular in Sect. 5 for the torsion. A generalized connection D is split into two parts, one along a vector field and another along a one form. More precisely, \(D = \nabla + V\) where

$$\begin{aligned} \nabla = \left( \begin{array}{c@{\quad }c} \nabla ^{TT} &{} \nabla ^{TT^*}\\ \nabla ^{T^*T}&{}\nabla ^{T^*T^*} \end{array}\right) , \end{aligned}$$

where \(\nabla ^{TT}\) and \(\nabla ^{T^*T^*}\) are the connections on TM and \(T^*M\) defined by the coefficientsFootnote 1\(\Gamma _\mu {}^\nu {}_\rho \equiv \Gamma _\mu {}^{s_\nu }{}_{s_\rho }\) and \(\tilde{\Gamma }_{\mu }{}_\nu {}^\rho \equiv \Gamma _{\mu }{}^{s^\nu }{}_{s^\rho }\), respectively, while \(\nabla ^{TT^*}\in \Gamma (T^*M\otimes TM^{\otimes 2})\) and \(\nabla ^{T^*T}\in \Gamma (T^*M{}^{\otimes 3})\) are defined by \(\Gamma _{\mu }{}^\nu {}^\rho \equiv \Gamma _{\mu }{}^{s_\nu }{}_{s^\rho }\) and \(\Gamma _{\mu }{}_{\nu }{}_\rho \equiv \Gamma _{\mu }{}^{s^\nu }{}_{s_\rho }\). Analogously, the component V decomposes as

$$\begin{aligned} V = \left( \begin{array}{c@{\quad }c} V^{TT} &{} V^{TT^*}\\ V^{T^*T}&{}V^{T^*T^*} \end{array}\right) , \end{aligned}$$

so that we define the components of \(V^{T^*T}\) by \(V^{\mu }{}_{\nu }{}_\rho \equiv V^{\mu }{}^{s^\nu }{}_{s_\rho }\), respectively of \(V^{T^*T^*}\) by \(V^{\mu }{}_\nu {}^\rho \equiv V^{\mu }{}^{s^\nu }{}_{s^\rho }\). Similarly, for \(V^{TT}\) by \(\tilde{V}^{\mu }{}^\nu {}_\rho \equiv V^{\mu }{}^{s_\nu }{}_{s_\rho }\) and for \(V^{TT^*}\) by \(V^{\mu }{}^\nu {}^{\rho }\equiv V^{\mu }{}^{s_\nu }{}_{s^\rho }\).

With these conventions, the direct evaluation of the torsion \(T(Q_{{{\mathcal {E}}}}) = Q_{{{\mathcal {E}}}}(\tau _{{\mathcal {M}}})\) gives, as mentioned in chapter 5, three contributions

$$\begin{aligned} T(Q_{{\mathcal {E}}}) = T(\Gamma ) + T(V) + T^{(1,1)}(\Gamma ,V) \end{aligned}$$
(52)

which we now give explicitly in components. They are

$$\begin{aligned} T(\Gamma )= & {} \Gamma _\mu {}^\rho {}_\nu \psi ^\mu \psi ^\nu s_\rho + (\tfrac{1}{2}H_{\rho \mu \nu } + \Gamma _{\mu \rho \nu })\psi ^\mu \psi ^\nu s^\rho \in \Gamma (\Lambda ^2 T^*M\otimes {{\mathbb {T}}}M), \\ T(V)= & {} V^{\mu }{}^\rho {}^\nu b_\mu b_\nu s_\rho + V^\mu {}_\rho {}^\nu b_\mu b_\nu s^\rho \in \Gamma (\Lambda ^2 TM\otimes {{\mathbb {T}}}M), \end{aligned}$$

and

$$\begin{aligned} T^{(1,1)}(\Gamma ,V)= ({\tilde{V}}^{\mu }{}^\rho {}_\nu - \Gamma _\nu {}^\rho {}^\mu )b_\mu \psi ^\nu s_\rho + (V^\mu {}_\rho {}_\nu - {\tilde{\Gamma }}_\nu {}_\rho {}^\mu )b_\mu \psi ^\nu s^\rho + p_\mu s^{\mu }\;. \end{aligned}$$
(53)

It is clear that the first term appearing in \(T(\Gamma )\) is the usual torsion of the affine connection \(\nabla ^{TT}\). As in the discussion of the (1, 1) component of the curvature, we can introduce an affine connection on TM in order to get a covariant \(\tilde{p}\) so that \(T^{(1,1)}(\Gamma ,V)-\tilde{p}_\mu s^\mu \in \Gamma (T^*M\otimes TM\otimes {{\mathbb {T}}}M)\). This gives the K-dependent form of the (1, 1) component of the torsion, as described and used in (36) of the main text.

Lagrangian Submanifolds of \(T^*[2]T[1]M\)

It is known that lagrangian submanifolds of \(T^*[2]T[1]M\) invariant under the homological vector field correspond to Dirac structures of the Courant algebroid associated to it (e.g., section 4 of [27]). In this appendix, we work out explicitly the details of the characterization of Dirac structures in this language which is particularly useful for the main text. Let \(L \subset {{\mathbb {T}}}M\) be a Dirac structure; we are going to describe the corresponding \(d_{{\mathcal {M}}}\)-invariant lagrangian submanifold \({{\mathcal {L}}}_L {\mathop {\hookrightarrow }\limits ^{\phi }} T^*[2]T[1]M\).

As a Lie algebroid, L is described by the NQ-manifold L[1] of degree 1. Locally, let us choose for the latter coordinates \((y^\mu ,\lambda ^A)\) for L[1] of degrees (0, 1) and for the Courant algebroid \((x^\mu , \psi ^\mu , b_\mu , p_\mu )\) as in the main text. Finally, let us denote by \(\omega = dx^\mu dp_\mu + d\psi ^\mu db_\mu \) the canonical symplectic structure of \(T^*[2]T[1]M\). We describe the embedding \(\phi \) by the following formulas:

$$\begin{aligned} y^\mu = x^\mu ,\;\;\; \psi ^\mu = \rho ^\mu _A \lambda ^A ,\quad b_\mu = \rho _{\mu A} \lambda ^A , \quad p_\mu = \frac{1}{2}\phi _{\mu A B}\lambda ^A\lambda ^B, \end{aligned}$$
(54)

where \(\rho ^\mu _A\) and \(\rho _{\mu A}\) denote the components of the maps \(\rho _{T^*}\) and \(\rho \) introduced in Sect. 4 and \(\phi _{\mu AB}\) to be determined. For a basis of vector fields, using (54) this means

$$\begin{aligned} \phi _*\left( \frac{\partial }{\partial y^\mu }\right)&=\frac{\partial }{\partial x^\mu } + \frac{\partial \rho ^\kappa _A}{\partial x^\mu } \lambda ^A \frac{\partial }{\partial \psi ^\kappa } + \frac{\partial \rho _{\kappa A}}{\partial x^\mu }\lambda ^A \frac{\partial }{\partial b_\kappa } + \frac{\partial \phi _{\kappa A B}}{\partial x^\mu } \lambda ^A\lambda ^B \frac{\partial }{\partial p_\kappa }, \end{aligned}$$
(55)
$$\begin{aligned} \phi _*\left( \frac{\partial }{\partial \lambda ^A}\right)&= \rho ^\mu _A \frac{\partial }{\partial \psi ^\mu } + \rho _{\mu A}\frac{\partial }{\partial b_\mu } + \phi _{\mu A B}\lambda ^B \frac{\partial }{\partial p_\mu }. \end{aligned}$$
(56)

\({{\mathcal {L}}}_L\) being lagrangian means \(\phi ^* \omega = 0\), which gives the following two conditions:

$$\begin{aligned} 0&= (\phi ^*\omega )\Bigl (\frac{\partial }{\partial y^\mu }, \frac{\partial }{\partial \lambda ^A}\Bigr ) = \,\Bigl (\phi _{\mu A B} - \rho ^\kappa _A \frac{\partial \rho _{\kappa B}}{\partial x^\mu } - \frac{\partial \rho ^\kappa _B}{\partial x^\mu } \rho _{\kappa A}\Bigr )\lambda ^B, \end{aligned}$$
(57)
$$\begin{aligned} 0&= (\phi ^*\omega )\Bigl (\frac{\partial }{\partial \lambda ^A},\frac{\partial }{\partial \lambda ^B}\Bigr ) = \,\rho ^\mu _A \rho _{\mu B} + \rho ^\mu _{B}\rho _{\mu A} = 0\;. \end{aligned}$$
(58)

The first condition fixes \(\phi _{\mu AB}\) in the transformations (54), and the second one is satisfied thanks to the fact that L is lagrangian.

It is now a direct computation the check that \(d_{{\mathcal {M}}}\) restricts to \({{\mathcal {L}}}_L\), indeed \(\phi _*(d_{L[1]})=d_{{\mathcal {M}}}\) follows from involutivity of L.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aschieri, P., Bonechi, F. & Deser, A. On Curvature and Torsion in Courant Algebroids. Ann. Henri Poincaré 22, 2475–2496 (2021). https://doi.org/10.1007/s00023-021-01024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01024-5

Navigation