Skip to main content
Log in

Factorizations of the same length in abelian monoids

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Let \({{\mathcal {S}}}\subseteq {{\mathbb {Z}}}^m \oplus T\) be a finitely generated and reduced monoid. In this paper we develop a general strategy to study the set of elements in \({\mathcal {S}}\) having at least two factorizations of the same length, namely the ideal \({\mathcal {L}}_{{\mathcal {S}}}\). To this end, we work with a certain (lattice) ideal associated to the monoid \({\mathcal {S}}\). Our study can be seen as a new approach generalizing [9], which only studies the case of numerical semigroups. When \({{\mathcal {S}}}\) is a numerical semigroup we give three main results: (1) we compute explicitly a set of generators of the ideal \({\mathcal {L}}_{\mathcal S}\) when \({\mathcal {S}}\) is minimally generated by an almost arithmetic sequence; (2) we provide an infinite family of numerical semigroups such that \({\mathcal {L}}_{{\mathcal {S}}}\) is a principal ideal; (3) we classify the computational problem of determining the largest integer not in \({\mathcal {L}}_{{\mathcal {S}}}\) as an \(\mathcal {NP}\)-hard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abbott, J., Bigatti, A.M., Robbiano, L.: CoCoA: a system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it

  2. Assi, A., García-Sánchez, P.A.: Numerical semigroups and applications. RSME Springer Series. Springer International Publishing, New York (2016)

  3. Bayer, D., Mumford, D.: What can be computed in algebraic geometry? In: Computational algebraic geometry and commutative algebra (Cortona, 1991), Sympos. Math., XXXIV, pages 1–48. Cambridge Univ. Press, Cambridge, (1993)

  4. Bermejo, I., García-Llorente, E., García-Marco, I.: Algebraic invariants of projective monomial curves associated to generalized arithmetic sequences. J. Symbolic Comput. 81, 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bermejo, I., García-Marco, I.: Complete intersections in certain affine and projective monomial curves. Bull. Braz. Math. Soc. (N.S.) 45(4), 599–624 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bigatti, A.M., La Scala, R., Robbiano, L.: Computing toric ideals. J. Symbolic Comput. 27(4), 351–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanco, V., García-Sánchez, P.A., Geroldinger, A.: Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and krull monoids. Illinois J. of Math. 55, 1385–1414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bruns, W., Gubeladze, J., Trung, N.V.: Problems and algorithms for affine semigroups. Semigroup Forum 64(2), 180–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chapman, S.T., García-Sánchez, P.A., Llena, D., Marshall, J.: Elements in a numerical semigroup with factorizations of the same length. Can. Math. Bull. 54(1), 39–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman, S. T., Coykendall, J., Gotti, F. , Smith, W.W. : Length-factoriality in commutative monoids and integral domains. J. Algebra (2021). arXiv:2101.05441 (to appear)

  11. Charalambous, H., Thoma, A., Vladoiu, M.: Minimal generating sets of lattice ideals. Collect. Math. 68(3), 377–400 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cimpoeaş, M., Stamate, D.I.: On intersections of complete intersection ideals. J. Pure Appl. Algebra 220(11), 3702–3712 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, Volume II. Number v. 2 in Mathematical surveys and monographs. American Mathematical Society, (1967)

  14. Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties.Graduate studies in mathematics. AMS - American Mathematical Society, USA (2011)

    Google Scholar 

  15. Decker, W., Greuel, G-M., Pfister, G., Schönemann, H.: Singular 4-1-2- A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, (2020)

  16. Eisenbud, D., Goto, S.: Linear free resolutions and minimal multiplicity. J. Algebra 88(1), 89–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foroutan, A., Hassler, W.: Chains of factorizations and factorizations with successive lengths. Commun. Algebra 34(3), 939–972 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. García-García, J.I., Marín-Aragón, D., Moreno-Frías, M.A.: Factorizations of the same length in numerical semigroups. Int. J. Comput. Math. 96(12), 2511–2521 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Sánchez, P.A., Herrera-Poyatos, A.: Isolated factorizations and their applications in simplicial e semigroups. J.Algebra Appl. 19, 2050082 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. García-Sánchez, P.A., Ojeda, I., Rosales, J.C.: Affine semigroups having a unique Betti element. J. Algebra Appl. 12(3), 125–177 (2012)

  21. García-Sánchez, P.A., O’Neill, C., Webb, G.: The computation of factorization invariants for affine semigroups. J. Algebra Appl. 18(1), 1950019 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geroldinger, A., Halter-Koch, F.: Non-unique factorizations algebraic, combinatorial and analytic theory number 278 in pure and applied mathematics. Chapman and Hall /CRC, Ohio (2006)

    MATH  Google Scholar 

  23. Geroldinger, A., Reinhart, A.: The monotone catenary degree of monoids of ideals. Int. J. Algebra Comput. 29(03), 419–457 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Geroldinger, A., Zhong, Q.: Factorization theory in commutative monoids. Semigroup Forum 100(1), 22–51 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gonzalez, D., Wright, C., Zomback, J.: Monotone catenary degree in numerical monoids, (2019)

  26. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  27. Hassler, W.: Properties of factorizations with successive lengths in one-dimensional local domains. J. Commut. Algebra 1(2), 237–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hemmecke, R., Malkin, P.N.: Computing generating sets of lattice ideals and Markov bases of lattices. J. Symbolic Comput. 44(10), 1463–1476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. L’vovsky, S.: On inflection points, monomial curves, and hypersurfaces containing projective curves. Math. Ann. 306(4), 719–735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Márquez-Campos, G., Ojeda, I., Tornero, J.M.: On the computation of the apéry set of numerical monoids and affine semigroups. Semigroup Forum 91(1), 139–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-Hall Inc, Englewood Cliffs (1982)

    MATH  Google Scholar 

  32. Philipp, A.: A characterization of arithmetical invariants by the monoid of relations ii: the monotone catenary degree and applications to semigroup rings. Semigroup Forum 90(1), 220–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pisón-Casares, P.: The short resolution of a lattice ideal. Proc. Amer. Math. Soc. 131(4), 1081–1091 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ramírez-Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16(1), 143–147 (1996)

  35. Ramírez-Alfonsín, J.L.: The Diophantine Frobenius Problem, volume 30 of Oxford Lecture Series in Mathematics and Its Applications. OUP Oxford, (2005)

  36. Sturmfels, B.: Grobner bases and convex polytopes. Memoirs of the American Mathematical Society. American Mathematical Society, USA (1996)

  37. Villarreal, R.H.: Monomial algebras. Monographs and research notes in mathematics, 2nd edn. CRC Press, Boca Raton (2015)

    Google Scholar 

  38. Vu, T.: Periodicity of Betti numbers of monomial curves. J. Algebra 418, 66–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank M.A. Moreno-Frías, who presented the results of [18] in the seminar GASIULL at Universidad de La Laguna and introduced and encouraged us to work on this topic. We also want to thank the anonymous referee for his/her insightful comments. In particular, the referee suggested to relate the results in an earlier version of the paper with the equal catenary degree. This suggestion gave rise to Sect. 4. Moreover, in this earlier version, we considered the problem of factorizations in affine monoids and the referee suggested to tackle the same problem in the (slightly) more general context of abelian, cancellative and finitely generated monoids. Following this suggestion we could obtain more general results in Sects. 2 and 3.

Funding

This work was partially supported by the Spanish MICINN PID2019-105896GB-I00 and MASCA (ULL Research Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelia R. García Barroso.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Spanish MICINN PID2019-105896GB-I00 and MASCA (ULL Research Project)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, E.R.G., García-Marco, I. & Márquez-Corbella, I. Factorizations of the same length in abelian monoids. Ricerche mat 72, 679–707 (2023). https://doi.org/10.1007/s11587-021-00562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00562-8

Keywords

Mathematics Subject Classification

Navigation