Skip to main content
Log in

Neural network approaches based on new NCP-functions for solving tensor complementarity problem

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Two new NCP-functions are constructed firstly in this paper. The main purpose is to accelerate the process of solution-finding for tensor complementarity problem, which is implemented by neural network methods based on the promising NCP-functions. Moreover, the stability properties of the proposed neural networks are achieved via some theoretics and properties of generalization for linear and nonlinear complementarity problems. Plentiful numerical simulations demonstrate that the presented neural networks possess significantly better stability and comparable convergence rates than neural networks based on some existing NCP-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang, Y.-L., Chen, J.-S., Yang, C.-Y.: Symmetrization of generalized natural residual function for NCP. Oper. Res. Lett. 43(4), 354–358 (2015)

    Article  MathSciNet  Google Scholar 

  2. Che, M.-L., Qi, L., Wei, Y.-M.: Positive-definite tensors to nonlinear complementarity problems. J. Optim. Theory Appl. 168, 475–487 (2016)

    Article  MathSciNet  Google Scholar 

  3. Alcantara, J.H., Chen, J.-S.: Neural networks based on three classes of NCP-functions for solving nonlinear complementarity problems. Neurocomputing 359, 102–113 (2019)

    Article  Google Scholar 

  4. Chen, J.-S., Ko, C.H., Pan, S.-H.: A neural network based on generalized Fischer–Burmeister function for nonlinear complementarity problems. Inf. Sci. 180, 697–711 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chen, C., Mangasarian, O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Comput. Optim. Appl. 5, 97–138 (1996)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.-S.: On some NCP-functions based on the generalized Fischer–Burmeister function. Asia-Pac. J. Oper. Res. 24, 401–420 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chen, J.-S., Ko, C.H., Wu, X.-R.: What is the generalization of natural residual function for NCP. Pac. J. Optim. 12, 19–27 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Ding, W., Luo, Z., Qi, L.: P-tensors, P0-tensors, and their applications. Linear Algebra Appl. 555, 336–354 (2018)

    Article  MathSciNet  Google Scholar 

  9. Gowda, M.S., Luo, Z., Qi, L., Xiu, N.: \(Z\)-tensors and complementarity problems, arXiv:1510.07933 (2015)

  10. Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. J. Global Optim. 73(4), 789–800 (2019)

    Article  MathSciNet  Google Scholar 

  11. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related algorithm. SIAM J. Optim. 6, 225–247 (1997)

    Article  MathSciNet  Google Scholar 

  12. Geiger, C., Kanzow, C.: On the resolution of monotone complementarity problems. Comput. Optim. Appl. 5, 155–173 (1996)

    Article  MathSciNet  Google Scholar 

  13. Han, L.: A homotopy method for solving multilinear systems with M-tensors. Appl. Math. Lett. 69, 49–54 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hopfield, J.J., Tank, D.W.: Neural computation of decision in optimization problems. Biol. Cybern. 52, 141–152 (1985)

    MATH  Google Scholar 

  15. Huang, Z.-H., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)

    Article  MathSciNet  Google Scholar 

  16. Huang, Z.-H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)

    Article  MathSciNet  Google Scholar 

  17. Huang, Z.-H., Qi, L.: Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kanzow, C.: Nonlinear complementarity as unconstrained optimization. J. Optim. Theory Appl. 88, 139–155 (1996)

    Article  MathSciNet  Google Scholar 

  19. Liao, L.-Z., Qi, H.-D., Qi, L.-Q.: Solving nonlinear complementarity problems with neural networks: a reformulation method approach. J. Comput. Appl. Math. 131, 342–359 (2001)

    Article  MathSciNet  Google Scholar 

  20. Liu, D., Li, W., Vong, S.W.: Tensor complementarity problems: the gus-property and an algorithm. Linear Multilinear Algebra 66, 1726–1749 (2018)

    Article  MathSciNet  Google Scholar 

  21. Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to \(Z\)-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lv, C.-Q., Ma, C.-F.: A Levenberg-Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332, 13–25 (2018)

    Article  MathSciNet  Google Scholar 

  23. Mangasarian, O.L., Solodov, M.V.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program. 62, 277–297 (1993)

    Article  MathSciNet  Google Scholar 

  24. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, London (1982)

    MATH  Google Scholar 

  25. Qi, H.-D., Liao, L.-Z.: A smoothing newton method for general nonlinear complementarity problems. Comput. Optim. Appl. 17, 231–253 (2000)

    Article  MathSciNet  Google Scholar 

  26. Qi, L., Huang, Z.-H.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183(2), 365–385 (2019)

    Article  MathSciNet  Google Scholar 

  27. Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)

    Article  MathSciNet  Google Scholar 

  28. Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ke, Y.-F., Ma, C.-F.: A neural network for the generalized nonlinear complementarity problem over a polyhedral cone. J. Austral. Math. Soc. 99, 364–379 (2015)

    Article  MathSciNet  Google Scholar 

  30. Xie, Y.-J., Ma, C.-F.: A generalized Newton method of high-order convergence for solving the large-scale linear complementarity problem. J. Inequal. Appl. 410, 1–12 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Ke, Y.-F., Ma, C.-F.: On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Appl. Math. Comput. 243, 413–418 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Xie, Y.-J., Ma, C.-F.: A smoothing Levenberg-Marquardt algorithm for solving a class of stochastic linear complementarity problem. Appl. Math. Comput. 217, 4459–4472 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Ke, Y.-F., Ma, C.-F., Zhang, H.: The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems. Numer. Algorithms 79, 1283–1303 (2018)

    Article  MathSciNet  Google Scholar 

  34. Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169(3), 1069–1078 (2016)

    Article  MathSciNet  Google Scholar 

  35. Song, Y., Mei, W.: Structural properties of tensors and complementarity problems. J. Optim. Theory Appl. 176(2), 289–305 (2018)

    Article  MathSciNet  Google Scholar 

  36. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986)

    Article  Google Scholar 

  37. Wiggins, S.: Introduction to Applied and Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  38. Wang, Y., Huang, Z.-H., Bai, X.-L.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)

    Article  MathSciNet  Google Scholar 

  39. Wang, X.-Z., Che, M.-L., Qi, L., Wei, Y.-M.: Modified gradient dynamic approach to the tensor complementarity problem. Optim. Methods Softw. 35(2), 394–415 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by National Science Foundation of China (11901098) and National Key Research and Development Program of China (2018YFC1504200), Fujian Natural Science Foundation (Grant No. 2019J01879).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fen Ke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YJ., Ke, YF. Neural network approaches based on new NCP-functions for solving tensor complementarity problem. J. Appl. Math. Comput. 67, 833–853 (2021). https://doi.org/10.1007/s12190-021-01509-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-021-01509-w

Keywords

Mathematics Subject Classification

Navigation