Skip to main content
Log in

The Effect of varying correlation lengths on Anomalous Transport

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Conventional concepts for transport in porous media assume that the heterogeneous distribution of hydraulic conductivities is the source for the contaminant temporal and spatial heavy tail. This tailing, known as anomalous or non-Fickian transport, can be captured by the β parameter in the continuous-time random walk framework. This study shows that with the increase in spatial correlation length between these heterogeneous distributions of hydraulic conductivities, the transport’s anomaly reduces; yet, the β value is unchanged, suggesting a topological component of the conductivity field, captured by the β. This finding is verified by an analysis of the solute transport, showing that the changing conductivity values have a moderate effect on the transport shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ababou, R., McLaughlin, D., Gelhar, L.W., Tompson, A.F.B.: Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media. Transp. Porous Media 4(6), 549–565 (1989). https://doi.org/10.1007/bf00223627

    Article  Google Scholar 

  • Bear, J: Dynamics of fluids in porous media, Courier Corporation (2013)

  • Berkowitz, B., Scher, H.: Anomalous transport in random fracture networks. Phys. Rev. Lett. 79(20), 4038 (1997)

    Article  Google Scholar 

  • Berkowitz, B., Scher, H., Silliman, S.E.: Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36(1), 149–158 (2000)

    Article  Google Scholar 

  • Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev.Geophys. (2006). https://doi.org/10.1029/2005RG000178

    Article  Google Scholar 

  • Berkowitz, Y., Edery, Y., Scher, H., Berkowitz, B.: Fickian and non-Fickian diffusion with bimolecular reactions. Phys. Rev. E 87(3), 032812 (2013). https://doi.org/10.1103/PhysRevE.87.032812

    Article  Google Scholar 

  • Bianchi, M., Pedretti, D.: Geological entropy and solute transport in heterogeneous porous media. Water Resour. Res. 53(6), 4691–4708 (2017)

    Article  Google Scholar 

  • Bianchi, M., Zheng, C., Wilson, C., Tick, G.R., Liu, G., Gorelick, S.M.: Spatial connectivity in a highly heterogeneous aquifer From cores to preferential flow paths. Water Resour. Res. (2011). https://doi.org/10.1029/2009wr008966

    Article  Google Scholar 

  • Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. (2006). https://doi.org/10.1029/2005WR004578

    Article  Google Scholar 

  • Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)

    Article  Google Scholar 

  • Bromly, M., Hinz, C.: Non-Fickian transport in homogeneous unsaturated repacked sand. Water Resour. Res. (2004). https://doi.org/10.1029/2003WR002579

    Article  Google Scholar 

  • Bruderer-Weng, C., Cowie, P., Bernabé, Y., Main, I.: Relating flow channelling to tracer dispersion in heterogeneous networks. Adv. Water Resour. 27(8), 843–855 (2004)

    Article  Google Scholar 

  • Caers, J., Krishnan, S., Wang, Y., Kovscek, A.R.: A geostatistical approach to streamline-based history matching. SPE J. 7(03), 250–266 (2002)

    Article  Google Scholar 

  • Ciriello, V., Guadagnini, A., Di Federico, V., Edery, Y., Berkowitz, B.: Comparative analysis of formulations for conservative transport in porous media through sensitivity-based parameter calibration. Water Resour. Res. 49(9), 5206–5220 (2013)

    Article  Google Scholar 

  • Ciriello, V., Edery, Y., Guadagnini, A., Berkowitz, B.: Multimodel framework for characterization of transport in porous media. Water Resour. Res. 51(5), 3384–3402 (2015)

    Article  Google Scholar 

  • Cirpka, O.A., Kitanidis, P.K.: Characterization of mixing and dilution in heterogeneous aquifers by means of local temporal moments. Water Resour. Res. 36(5), 1221–1236 (2000)

    Article  Google Scholar 

  • Comolli, A., Dentz, M.: Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach. Eur. Phys. J. B 90(9), 166 (2017)

    Article  Google Scholar 

  • Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992). https://doi.org/10.1029/92wr01686

    Article  Google Scholar 

  • Cortis, A., Emmanuel, S., Rubin, S., Willbrand, K., Berkowitz, B: The CTRW Matlab toolbox v3. 1: a practical user’s guide, edited (2010)

  • Cushman, J.H., Ginn, T.: Nonlocal dispersion in media with continuously evolving scales of heterogeneity. Transp. Porous Media 13(1), 123–138 (1993)

    Article  Google Scholar 

  • Dagan, G., Neuman, S.P.: Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Delay, F., Ackerer, P., Danquigny, C.: Simulating solute transport in porous or fractured formations using random walk particle tracking: a review. Vadose Zone J. 4(2), 360–379 (2005)

    Article  Google Scholar 

  • Dentz, M., Bolster, D.: Distribution- versus correlation-induced anomalous transport in quenched random velocity fields. Phys. Rev. Lett. 105(24), 244301 (2010). https://doi.org/10.1103/PhysRevLett.105.244301

    Article  Google Scholar 

  • Di Donato, G., Obi, E.O., Blunt, M.J.: Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophys. Res. Lett. (2003). https://doi.org/10.1029/2003GL017196

    Article  Google Scholar 

  • Doepel, G., Sibley, W.: Miscible displacement-a multilayer technique for predicting reservoir performance. J. Petrol. Technol. 14(01), 73–80 (1962)

    Article  Google Scholar 

  • Dykstra, H., Parsons, R.: The prediction of oil recovery by water flood. Second. Recovery Oil United States 2, 160–174 (1950)

    Google Scholar 

  • Edery, Y., Scher, H., Berkowitz, B.: Modeling bimolecular reactions and transport in porous media. Geophys. Res. Lett. (2009). https://doi.org/10.1029/2008GL036381

    Article  Google Scholar 

  • Edery, Y., Scher, H., Berkowitz, B.: Particle tracking model of bimolecular reactive transport in porous media. Water Resour. Res. (2010). https://doi.org/10.1029/2009WR009017

    Article  Google Scholar 

  • Edery, Y., Guadagnini, A., Scher, H., Berkowitz, B.: Origins of anomalous transport in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50(2), 1490–1505 (2014)

    Article  Google Scholar 

  • Edery, Y., Dror, I., Scher, H., Berkowitz, B.: Anomalous reactive transport in porous media: experiments and modeling. Phys. Rev. E 91(5), 052130 (2015)

    Article  Google Scholar 

  • Edery, Y., Geiger, S., Berkowitz, B.: Structural controls on anomalous transport in fractured porous rock. Water Resour. Res. 52(7), 5634–5643 (2016)

    Article  Google Scholar 

  • Edery, Y., Weitz, D., Berg, S.: Surfactant variations in porous media localize capillary instabilities during Haines jumps. Phys. Rev. Lett. 120(2), 028005 (2018)

    Article  Google Scholar 

  • Fasano, A., Talamucci, F.: A comprehensive mathematical model for a multispecies flow through ground coffee. SIAM J Math. Anal. 31(2), 251–273 (2000)

    Article  Google Scholar 

  • Filipovitch, N., Hill, K., Longjas, A., Voller, V.: Infiltration experiments demonstrate an explicit connection between heterogeneity and anomalous diffusion behavior. Water Resour. Res. 52(7), 5167–5178 (2016)

    Article  Google Scholar 

  • Fiori, A., Zarlenga, A., Gotovac, H., Jankovic, I., Volpi, E., Cvetkovic, V., Dagan, G.: Advective transport in heterogeneous aquifers: Are proxy models predictive? Water Resour. Res. 51(12), 9577–9594 (2015)

    Article  Google Scholar 

  • Gelhar, L.W.: Stochastic subsurface hydrology from theory to applications. Water Resour. Res. 22(9S), 135S-145S (1986)

    Article  Google Scholar 

  • Ghanbarian-Alavijeh, B., Skinner, T.E., Hunt, A.G.: Saturation dependence of dispersion in porous media. Phys. Rev. E 86(6), 066316 (2012)

    Article  Google Scholar 

  • Giordano, R., Salter S., Mohanty, K.: The effects of permeability variations on flow in porous media.In: Paper presented at SPE annual technical conference and exhibition, Society of Petroleum Engineers (1985)

  • Gómez-Hernández, J.J., Journel, A.G.: Joint sequential simulation of multigaussian fields. In: Soares, A. (ed.) Geostatistics Tróia ’92, vol. 1, pp. 85–94. Springer, Netherlands, Dordrecht (1993)

    Chapter  Google Scholar 

  • Guadagnini, A., Neuman, S.P.: Nonlocal and localized analyses of conditional mean steady state flow in bounded, randomly nonuniform domains: 1. Theory and computational approach. Water Resour. Res. 35(10), 2999–3018 (1999). https://doi.org/10.1029/1999wr900160

    Article  Google Scholar 

  • Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995)

    Article  Google Scholar 

  • Haggerty, R., McKenna, S.A., Meigs, L.C.: On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 36(12), 3467–3479 (2000)

    Article  Google Scholar 

  • Haggerty, R., Fleming, S.W., Meigs, L.C., McKenna, S.A.: Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection-withdrawal tests. Water Resour. Res. 37(5), 1129–1142 (2001)

    Article  Google Scholar 

  • Hansen, S.K.: Simplified calibration of continuous-time random walk solute transport models. Adv. Water Resour. 137, 103521 (2020)

    Article  Google Scholar 

  • Hansen, S.K., Haslauer, C.P., Cirpka, O.A., Vesselinov, V.V.: Direct breakthrough curve prediction from statistics of heterogeneous conductivity fields. Water Resour. Res. 54(1), 271–285 (2018)

    Article  Google Scholar 

  • Heidari, P., Li, L.: Solute transport in low-heterogeneity sandboxes: the role of correlation length and permeability variance. Water Resour. Res. 50(10), 8240–8264 (2014)

    Article  Google Scholar 

  • Hewett, T.: Fractal distributions of reservoir heterogeneity and their influence on fluid transport. In: Paper presented at SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (1986)

  • Hovadik, J.M., Larue, D.K.: Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Pet. Geosci. 13(3), 195–211 (2007)

    Article  Google Scholar 

  • Jensen, J.L., Currie, I.D.: A new method for estimating the Dykstra-Parsons coefficient to characterize reservoir heterogeneity. SPE Reserv. Eng. 5(03), 369–374 (1990)

    Article  Google Scholar 

  • Jensen, J.L., Lake, L.W.: The influence of sample size and permeability distribution on heterogeneity measures. SPE Reserv. Eng. 3(02), 629–637 (1988)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Spatial Markov model of anomalous transport through random lattice networks. Phys. Rev. Lett. 107(18), 180602 (2011)

    Article  Google Scholar 

  • Kang, P.K., Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)

    Article  Google Scholar 

  • Kang, P.K., Dentz, M., Le Borgne, T., Juanes, R.: Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 92(2), 022148 (2015)

    Article  Google Scholar 

  • Kosakowski, G.: Anomalous transport of colloids and solutes in a shear zone. J. Contam. Hydrol. 72(1–4), 23–46 (2004)

    Article  Google Scholar 

  • Kosakowski, G., Berkowitz, B., Scher, H.: Analysis of field observations of tracer transport in a fractured till. J. Contam. Hydrol. 47(1), 29–51 (2001)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Carrera, J.: Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101(9), 090601 (2008)

    Article  Google Scholar 

  • Lenormand, R., Zarcone, C., Sarr, A.: Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337–353 (1983)

    Article  Google Scholar 

  • Lester, D., Metcalfe, G., Trefry, M.: Anomalous transport and chaotic advection in homogeneous porous media. Phys. Rev. E 90(6), 063012 (2014)

    Article  Google Scholar 

  • Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64(3–4), 203–226 (2003). https://doi.org/10.1016/s0169-7722(02)00204-8

    Article  Google Scholar 

  • Margolin, G., Berkowitz, B.: Spatial behavior of anomalous transport. Phys. Rev. E 65(3), 031101 (2002)

    Article  Google Scholar 

  • Mariethoz, G., Renard, P., Straubhaar, J.: The direct sampling method to perform multiple-point geostatistical simulations. Water Resour. Res. (2010). https://doi.org/10.1029/2008WR007621

    Article  Google Scholar 

  • Mettier, R., Kosakowski, G., Kolditz, O.: Influence of small-scale heterogeneities on contaminant transport in fractured crystalline rock. Groundwater 44(5), 687–696 (2006)

    Article  Google Scholar 

  • Mishra, S., Brigham, W.E., Orr, F.M., Jr.: Tracer-and pressure-test analysis for characterization of areally heterogeneous reservoirs. SPE Form. Eval. 6(01), 45–54 (1991)

    Article  Google Scholar 

  • Morales-Casique, E., Neuman, S.P., Guadagnini, A.: Nonlocal and localized analyses of nonreactive solute transport in bounded randomly heterogeneous porous media: computational analysis. Adv. Water Resour. 29(9), 1399–1418 (2006a)

    Article  Google Scholar 

  • Morales-Casique, E., Neuman, S.P., Guadagnini, A.: Non-local and localized analyses of non-reactive solute transport in bounded randomly heterogeneous porous media: theoretical framework. Adv. Water Resour. 29(8), 1238–1255 (2006b)

    Article  Google Scholar 

  • Moreno, L., Tsang, C.F.: Flow channeling in strongly heterogeneous porous media: a numerical study. Water Resour. Res. 30(5), 1421–1430 (1994)

    Article  Google Scholar 

  • Naftaly, A., Edery, Y., Dror, I., Berkowitz, B.: Visualization and analysis of nanoparticle transport and ageing in reactive porous media. J. Hazard. Mater. 299, 513–519 (2015)

    Article  Google Scholar 

  • Nissan, A., Berkowitz, B.: Anomalous transport dependence on Péclet number, porous medium heterogeneity, and a temporally varying velocity field. Phys. Rev. E 99(3), 033108 (2019)

    Article  Google Scholar 

  • Phillips, F.M., Wilson, J.L.: An approach to estimating hydraulic conductivity spatial correlation scales using geological characteristics. Water Resour. Res. 25(1), 141–143 (1989). https://doi.org/10.1029/WR025i001p00141

    Article  Google Scholar 

  • Pintos, S., Bohorquez, C., Queipo, N.V.: Asymptotic Dykstra-Parsons distribution, estimates and confidence intervals. Math. Geosci. 43(3), 329–343 (2011)

    Article  Google Scholar 

  • Purvance, D.T., Andricevic, R.: On the electrical-hydraulic conductivity correlation in aquifers. Water Resour. Res. 36(10), 2905–2913 (2000). https://doi.org/10.1029/2000wr900165

    Article  Google Scholar 

  • Raveh-Rubin, S., Edery, Y., Dror, I., Berkowitz, B.: Nickel migration and retention dynamics in natural soil columns. Water Resour. Res. 51(9), 7702–7722 (2015)

    Article  Google Scholar 

  • Rehfeldt, K.R., Boggs, J.M., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 3 Geostatistical analysis of hydraulic conductivity. Water Resour. Res. 28(12), 3309–3324 (1992). https://doi.org/10.1029/92wr01758

    Article  Google Scholar 

  • Riva, M., Guadagnini, A., Neuman, S.P., Janetti, E.B., Malama, B.: Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media. Adv. Water Resour. 32(10), 1495–1507 (2009). https://doi.org/10.1016/j.advwatres.2009.07.003

    Article  Google Scholar 

  • Roubinet, D., De Dreuzy, J.-R., Tartakovsky, D.M.: Particle-tracking simulations of anomalous transport in hierarchically fractured rocks. Comput. Geosci. 50, 52–58 (2013)

    Article  Google Scholar 

  • Russian, A., Dentz, M., Gouze, P.: Time domain random walks for hydrodynamic transport in heterogeneous media. Water Resour. Res. 52(5), 3309–3323 (2016)

    Article  Google Scholar 

  • Salamon, P., Fernandez-Garcia, D., Gómez-Hernández, J.: Modeling tracer transport at the MADE site the importance of heterogeneity. Water Resour. Res. (2007). https://doi.org/10.1029/2006WR005522

    Article  Google Scholar 

  • Sanchez-Vila, X., Carrera, J.: On the striking similarity between the moments of breakthrough curves for a heterogeneous medium and a homogeneous medium with a matrix diffusion term. J. Hydrol. 294(1–3), 164–175 (2004)

    Article  Google Scholar 

  • Sanchez-Vila, X., Guadagnini, A., Carrera, J.: Representative hydraulic conductivities in saturated groundwater flow. Rev. Geophys. (2006). https://doi.org/10.1029/2005RG000169

    Article  Google Scholar 

  • Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. (2003). https://doi.org/10.1029/2003WR002141

    Article  Google Scholar 

  • Shook, G. M., and K. M. Mitchell (2009), A robust measure of heterogeneity for ranking earth models: The F PHI curve and dynamic Lorenz coefficient, paper presented at SPE annual technical conference and exhibition, Society of Petroleum Engineers.

  • Tartakovsky, D.M., Neuman, S.P.: Transient flow in bounded randomly heterogeneous domains. 1. Exact conditional moment equations and recursive approximations. Water Resour. Res. 34(1), 1–12 (1998). https://doi.org/10.1029/97wr02118

    Article  Google Scholar 

  • Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004)

    Article  Google Scholar 

  • Tyukhova, A.R., Willmann, M.: Conservative transport upscaling based on information of connectivity. Water Resour. Res. 52(9), 6867–6880 (2016)

    Article  Google Scholar 

  • Tyukhova, A.R., Kinzelbach, W., Willmann, M.: Delineation of connectivity structures in 2-D heterogeneous hydraulic conductivity fields. Water Resour. Res. 51(7), 5846–5854 (2015)

    Article  Google Scholar 

  • Vogel, H.-J.: Topological characterization of porous media. In: Mecke, K., Stoyan, D. (eds.) Morphology of condensed matter, pp. 75–92. Springer, Berlin (2002)

    Chapter  Google Scholar 

  • Warren, J., Price, H.: Flow in heterogeneous porous media. Soc. Petrol. Eng. J. 1(03), 153–169 (1961)

    Article  Google Scholar 

  • Willmann, M., Carrera, J., Sánchez-Vila, X.: Transport upscaling in heterogeneous aquifers: what physical parameters control memory functions? Water Resour. Res. (2008). https://doi.org/10.1029/2007WR006531

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the ISF-NSFC joint research program (Grant No. 3333/19)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Edery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As stated in Method section, a parallel simulation is presented for Δ = 0.02 so to verify that a change of Δ will have no effect on the transport. As previously, we use a field of 3000 × 1200 cells from which a 300 × 120 field is taken. Unlike the previous simulation, the absolute field size is now 6 × 1.2, an order of magnitude smaller. Thus, the head difference was reduced from 100 to 10 so to maintain the same mean velocity. The dimensionless correlation length (normalized by the field length) ranges from 1 × 10–5 to 1 × 10–4, yet there are 15 cells for the low correlation length and 150 cells for the high correlation length.

The BTC fit in Fig. 5a–c and the corresponding juxtaposition in Fig. 5d–f show that the β is still persistent for the variations in correlation length, while the t2 is reducing due to the correlation length increase, as before. Moreover, the same dispersion increase can be found with an increase in correlation length. This shows the consistency of these results, mainly since the juxtaposition in Fig. 5d–f still reproduces the same slope associated with the β. At the same time, the t2 cutoff is apparent in the PDF tail dispersion. The PPF’s analysis, as the correlation length changes, shows even higher values of PPF’s spatial occurrence for varying correlation lengths of more than 60% to 85% (Fig. 6). As for the larger field, the weighted conductivity distribution for the PPFs has the same tailing as shown in Fig. 3a–c, where the backward tail follows the weighted conductivity, and the forward tail follows the unweighted distribution (Figs. 6a–c, 7)

Fig. 5
figure 5

ac Ensemble BTCs for correlation lengths of 1 × 10–5, 5 × 10–5 and 1 × 10–4 with CTRW-TPL fits for each. As can be seen, the tail decreases, yet it is the t2 and D that displays the biggest changes. For correlation length 1 × 10–5, the CTRW-TPL parameters are v = 4.4, D = 0.086, β = 1.63, t1 = 0.013 and t2 = 102.1. For correlation length 5 × 10–5, the CTRW-TPL parameters are v = 4.2, D = 0.45, β = 1.63, t1 = 0.01 and t2 = 101.8. And for correlation length 1 × 10–4, the CTRW-TPL parameters are v = 4.4, D = 1.55, β = 1.63, t1 = 0.0061 and t2 = 101.6. As can be seen, the tail decreases, yet it is the t2 that displays the most significant changes, while β is unchanged. df The PDF of 1 × 10–5, 5 × 10–5 and 1 × 10–4, respectively, for the ensemble, weighted by the particle visitation with the juxtaposition of the CTRW PDF with the same parameters found for ac. As can be seen, the logarithmic slope, which corresponds to β, is identical, while the t2 tailing and the t1 mean reduce with the increase in correlation length. All values are in consistent, arbitrary length and time units; the R2 difference is bigger than 0.95 for all figures

Fig. 6
figure 6

ac Blue circles are the conductivity distribution for correlation lengths of 1 × 10–5, 5 × 10–5 and 1 × 10–4, respectively, averaged for 1000 realizations, with average conductivity of 0.15, 0.24 and 0.36, respectively, and conductivity variance of 4.9, 4.8 and 4.5, respectively. Red squares are the same conductivity distributions only weighted by the particle’s visitations at each cell, with average conductivity of 0.67, 0.9 and 1.2, respectively, and conductivity variance of 4.9, 4.8 and 4.4, respectively; green asterisks are the permeabilities weighted by the particle visitations only on the PPF, with average conductivity of 0.54, 0.7 and 0.7, respectively, and conductivity variance of 4.9, 4.6 and 4.3, respectively. df Particle visitations on the PPF for correlation lengths of 1 × 10–5, 5 × 10–5 and 1 × 10–4, respectively

Fig. 7
figure 7

Ensemble BTCs at a x = 30 and b x = 120 for correlation lengths of 5 × 10–3, 1.6 × 10–2 and 5 × 10–2 (red, green and blue circles, respectively) with CTRW-TPL fits for each. a For x = 30 correlation length 5 × 10–3, the CTRW-TPL parameters are v = 4.8, D = 1, β = 1.63, t1 = 0.1 and t2 = 102.4. For x = 30 correlation length 1.6 × 10–2, the CTRW-TPL parameters are v = 4.8, D = 2.25, β = 1.63, t1 = 0.18 and t2 = 101.9. And for x = 30 correlation length 5 × 10–2, the CTRW-TPL parameters are v = 5.2, D = 8.46, β = 1.63, t1 = 0.4 and t2 = 101.6. b For x = 120 correlation length 5 × 10–3, the CTRW-TPL parameters are v = 4.16, D = 1, β = 1.63, t1 = 0.24 and t2 = 102.6. For x = 120 correlation length 1.6 × 10–2, the CTRW-TPL parameters are v = 4.17, D = 2.3, β = 1.63, t1 = 0.39 and t2 = 102.2. And for x = 120 correlation length 5 × 10–2, the CTRW-TPL parameters are v = 4.5, D = 9.5, β = 1.63, t1 = 0.86 and t2 = 101.9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edery, Y. The Effect of varying correlation lengths on Anomalous Transport. Transp Porous Med 137, 345–364 (2021). https://doi.org/10.1007/s11242-021-01563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01563-9

Keywords

Navigation