Skip to main content
Log in

A Thermodynamically Consistent Phase Field Model for Gas Transport in Saturated Bentonite Accounting for Initial Stress State

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A thermodynamically consistent phase field model that accounts for initial stress state is proposed in this paper to simulate the gas migration process in saturated bentonite. The energy contribution due to the fracturing process is included in Coussy’s thermodynamic framework for unsaturated porous media. The possible effect of the interfaces between different phases on the driving force functional for phase field and the effective stress has been identified from the proposed thermodynamic framework. In addition, the initial stress state is innovatively accounted for in the phase field model by introducing a fictitious strain tensor that is calculated from its corresponding initial stress tensor. It is the sum of the fictitious strain tensor and the strain tensor due to elastic deformation that governs the evolution of the phase field. The simulated results showed that the effect of the swelling pressure (regarded as the initial effective stress for a high swelling clay) on the fracture initiation has been well described by the proposed method. Specifically, the effect of either isotropic or anisotropic stress state on the fracturing process can be well reflected by the phase field approach based on Rankine-type fracture criterion. In contrast, the phase field approach based on the Griffith fracture criterion is more appropriate for the isotropic stress state than the anisotropic stress state because of the Poisson’s effect. Moreover, the gas pressure required to trigger the fracturing process needs to exceed the sum of the porewater pressure and the initial stress. The effect of the boundary condition on the evolution of fluid pressure and total stress has been qualitatively captured. It is found that the boundary with higher stiffness leads to a higher gas pressure in the developed fracture and a higher water pressure and total stress in the surrounding porous matrix. In addition, some key experimental findings, such as the preferential gas flow, the build-up of porewater pressure, the almost fully saturated state and the localized consolidation, have been qualitatively captured by the developed phase field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Code Availability

All models and code generated or used during the study appear in the submitted article.

References

  • Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  Google Scholar 

  • Alonso, E.E., Vaunat, J., Gens, A.: Modelling the mechanical behaviour of expansive clays. Eng. Geol. 54(1–2), 173–183 (1999)

    Article  Google Scholar 

  • Amarasiri, A.L., Kodikara, J.K.: Numerical modeling of desiccation cracking using the cohesive crack method. Int. J. Geomech. 13(3), 213–221 (2011)

    Article  Google Scholar 

  • Arnedo, D., Alonso, E.E., Olivella, S.: Gas flow in anisotropic claystone: modelling triaxial experiments. Int. J. Numer. Anal. Methods. Geomech. 37(14), 2239–2256 (2013)

    Article  Google Scholar 

  • Bennethum, L.S., Murad, M.A., Cushman, J.H.: Modified Darcy’s law, Terzaghi’s effective stress principle and Fick’s law for swelling clay soils. Comput. Geotech. 20(3–4), 245–266 (1997)

    Article  Google Scholar 

  • Borja, R.I.: On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J Solids Struct. 43(6), 1764–1786 (2006)

    Article  Google Scholar 

  • Borja, R.I., Koliji, A.: On the effective stress in unsaturated porous continua with double porosity. J. Mech. Phys. Solids 57(8), 1182–1193 (2009)

    Article  Google Scholar 

  • Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  Google Scholar 

  • Cajuhi, T., Sanavia, L., De Lorenzis, L.: Phase-field modeling of fracture in variably saturated porous media. Comput. Mech. 61, 299–318 (2018)

    Article  Google Scholar 

  • Carrier, B., Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)

    Article  Google Scholar 

  • Chapuis, R.P., Aubertin, M.: On the use of the Kozeny Carman equation to predict the hydraulic conductivity of soils. Can. Geotech. J. 40(3), 616–628 (2003)

    Article  Google Scholar 

  • Chen, B., Sun, Y., Barboza, B.R., Barron, A.R., Li, C.: Phase-field simulation of hydraulic fracturing with a revised fluid model and hybrid solver. Eng. Fract. Mech. 229, 106928 (2020)

    Article  Google Scholar 

  • Choo, J., Borja, R.I.: Stabilized mixed finite elements for deformable porous media with double porosity. Comput. Method Appl. Mater 293, 131–154 (2015)

    Article  Google Scholar 

  • Choo, J., Sun, W.: Cracking and damage from crystallization in pores: coupled chemo-hydro-mechanics and phase-field modeling. Comput. Method Appl. Mater. 335, 347–379 (2018)

    Article  Google Scholar 

  • Choo, J., Sun, W.: Coupled phase-field and plasticity modeling of geological materials: from brittle fracture to ductile flow. Comput Method Appl M 330, 1–32 (2018a)

    Article  Google Scholar 

  • Choo, J., Sun, W.: Cracking and damage from crystallization in pores: coupled chemo-hydro-mechanics and phase-field modeling. Comput. Method Appl. Mater. 335, 47–379 (2018b)

    Google Scholar 

  • Choo, J., White, J.A., Borja, R.I.: Hydromechanical modeling of unsaturated flow in double porosity media. Int. J. Geomech. 16(6), D4016002 (2016)

    Article  Google Scholar 

  • Coussy, O.: Poromechanics. Wiley, New York (2004)

    Google Scholar 

  • Coussy, O.: Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. Int. J. Numer. Anal. Methods Geomech. 31(15), 1675–1694 (2007)

    Article  Google Scholar 

  • Cueto-Felgueroso, L., Juanes, R.: A phase-field model of two-phase Hele–Shaw flow. J. Fluid Mech. 758, 522–552 (2014)

    Article  Google Scholar 

  • Cuss, R.J., Harrington, J.F., Noy, D.J., Graham, C.C., Sellin, P.: Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the large scale gas injection test (Lasgit). Appl Clay Sci 102, 81–92 (2014)

    Article  Google Scholar 

  • Dagher, E., Nguyen, T., Sedano, J.I.: Development of a mathematical model for gas migration (two-phase flow) in natural and engineered barriers for radioactive waste disposal. Geol. Soc. Lond. Spec. Publ. 482(SP482), 14 (2018)

    Google Scholar 

  • Daniels, K.A., Harrington, J.: The response of compact bentonite during a 1-D gas flow test. British Geological Survey. OR/17/067 (2017)

  • De Lorenzis, L., McBride, A., Reddy, B.: Phase-field modelling of fracture in single crystal plasticity. GAMM-Mitteilungen 39(1), 7–34 (2016)

    Article  Google Scholar 

  • Doughty, C.: Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers. Manage 48(6), 1768–1781 (2007)

    Article  Google Scholar 

  • Espinoza, D.N., Santamarina, J.C.: Clay interaction with liquid and supercritical CO2: the relevance of electrical and capillary forces. Int J Greenh Gas Con 10, 351–362 (2012)

    Article  Google Scholar 

  • Fall, M., Nasir, O., Nguyen, T.S.: A coupled hydro-mechanical model for simulation of gas migration in host sedimentary rocks for nuclear waste repositories. Eng. Geol. 176, 24–44 (2014)

    Article  Google Scholar 

  • Fourar, M., Lenormand, R.: A viscous coupling model for relative permeabilities in fractures. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1998)

  • Gens, A., Alonso, E.E.: A framework for the behavior of unsaturated expansive clays. Can. Geotech. J. 29(6), 1013–1032 (1992)

    Article  Google Scholar 

  • Gens Solé, A., Vállejan, B., Sánchez, M., Imbert, C., Villar, M.V., Van Geetl, M.: Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling. Géotechnique 61(5), 367–386 (2011)

    Article  Google Scholar 

  • Gerard, P., Harrington, J., Charlier, R., Collin, F.: Modelling of localised gas preferential pathways in claystone. Int. J. Rock Mech. Min. Sci. 67, 104–114 (2014)

    Article  Google Scholar 

  • Graham, C.C., Harrington, J.F., Cuss, R.J., Sellin, P.: Gas migration experiments in bentonite: implications for numerical modelling. Min. Mag. 76(8), 3279–3292 (2012)

    Article  Google Scholar 

  • Graham, C.C., Harrington, J.F., Sellin, P.: Gas migration in pre-compacted bentonite under elevated pore-water pressure conditions. Appl. Clay Sci. 132–133, 353–365 (2016)

    Article  Google Scholar 

  • Gui, Y., Hu, W., Zhao, Z., Zhu, X.: Numerical modelling of a field soil desiccation test using a cohesive fracture model with Voronoi tessellations. Acta Geotech. 13, 87–102 (2017)

    Article  Google Scholar 

  • Guo, G., Fall, M.: Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double effective stress concepts. Eng. Geol. 243, 253–271 (2018)

    Article  Google Scholar 

  • Guo, G., Fall, M.: Modelling of preferential gas flow in heterogeneous and saturated bentonite based on phase field method. Comput. Geotech. 116, 103206 (2019)

    Article  Google Scholar 

  • Guo, G., Fall, M.: A double pore structure model for gas migration in saturated bentonite accounting for damaging effects and hysteresis of permeability, submitted for publication (2020)

  • Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D 92(3), 178–192 (1996)

    Article  Google Scholar 

  • Harrington, J.,Horseman, S.: Gas migration in KBS-3 buffer bentonite, Sensitivity of Test Parameters to Experimental Boundary ConditionsSwedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden) (2003)

  • Harrington, J., Milodowski, A., Graham, C., Rushton, J., Cuss, R.: Evidence for gas-induced pathways in clay using a nanoparticle injection technique. Min. Mag 76(8), 3327–3336 (2012)

    Article  Google Scholar 

  • Harrington, J.F., Graham, C.C., Cuss, R.J., Norris, S.: Gas network development in a precompacted bentonite experiment: evidence of generation and evolution. Appl. Clay Sci. 147, 80–89 (2017)

    Article  Google Scholar 

  • Harrington, J., Graham, C., Cuss, R., Norris, S.: Gas network development in compact bentonite: key controls on the stability of flow pathways. Geofluids 2019, 1–19 (2019)

    Article  Google Scholar 

  • Heider, Y., Sun, W.: A phase field framework for capillary-induced fracture in unsaturated porous media: drying-induced vs. hydraulic cracking. Comput. Method Appl. Mater. 359, 112647 (2020)

    Article  Google Scholar 

  • Horseman, S.T., Harrington, J.F., Sellin, P.: Gas migration in clay barriers. Eng. Geol. 54(1–2), 139–149 (1999)

    Article  Google Scholar 

  • Jain, A., Juanes, R.: Preferential mode of gas invasion in sediments: grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. J. Geophys. Res. Solid Earth 114(B8), 1–19 (2009)

    Article  Google Scholar 

  • Juanes, R., Spiteri, E., Orr, F., Blunt, M.: Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 42(12), 1–13 (2006)

    Article  Google Scholar 

  • Killough, J.: Reservoir simulation with history-dependent saturation functions. Soc. Petrol. Eng. J. 16(01), 37–48 (1976)

    Article  Google Scholar 

  • Lee, S., Wheeler, M.F., Wick, T.: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Method Appl. Mater. 305, 111–132 (2016)

    Article  Google Scholar 

  • Lenhard, R., Parker, J.: A model for hysteretic constitutive relations governing multiphase flow: 2. Permeability-saturation relations. Water Resour. Res. 23(12), 2197–2206 (1987)

    Article  Google Scholar 

  • Li, W., Wei, C.: Stabilized low-order finite elements for strongly coupled poromechanical problems. Int. J. Numer. Methods Eng. 115(5), 531–548 (2018)

    Article  Google Scholar 

  • Liu, J.F., Skoczylas, F., Talandier, J.: Gas permeability of a compacted bentonite-sand mixture: coupled effects of water content, dry density, and confining pressure. Can. Geotech. J. 52(8), 1159–1167 (2015)

    Article  Google Scholar 

  • Liu, J.-F., Song, Y., Skoczylas, F., Liu, J.: Gas migration through water-saturated bentonite–sand mixtures, COx argillite, and their interfaces. Can. Geotech. J. 53(1), 60–71 (2016)

    Article  Google Scholar 

  • Luckner, L., Vangenuchten, M.T., Nielsen, D.R.: A consistent set of parametric models for the 2-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 25(10), 2187–2193 (1989)

    Article  Google Scholar 

  • Mahjoub, M., Rouabhi, A., Tijani, M., Granet, S., M’jahad, S., Talandier, J. : Numerical study of Callovo-Oxfordian argillite expansion due to gas injection. Int. J. Geomech. 18(1), 04017134 (2017)

    Article  Google Scholar 

  • Marschall, P., Horseman, S., Gimmi, T.: Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal. Oil Gas Sci. Technol. 60(1), 121–139 (2005)

    Article  Google Scholar 

  • Mauthe, S., Miehe, C.: Hydraulic fracture in poro-hydro-elastic media. Mech. Res. Commun. 80, 69–83 (2017)

    Article  Google Scholar 

  • Miehe, C., Mauthe, S.: Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Comput. Method Appl. Mater. 304, 619–655 (2016)

    Article  Google Scholar 

  • Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010a)

    Article  Google Scholar 

  • Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Method Appl. Mater. 199(45–48), 2765–2778 (2010b)

    Article  Google Scholar 

  • Miehe, C., Schänzel, L.-M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Method Appl. Mater. 294, 449–485 (2015)

    Article  Google Scholar 

  • Mikelić, A., Wheeler, M.F., Wick, T.: Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 19(6), 1171–1195 (2015)

    Article  Google Scholar 

  • Mohammadnejad, T., Khoei, A.: Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. Int. J. Numer. Anal. Meth. Geomech. 37(10), 1247–1279 (2013a)

    Article  Google Scholar 

  • Mohammadnejad, T., Khoei, A.: An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elem. Anal. Des. 73, 77–95 (2013b)

    Article  Google Scholar 

  • Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513–522 (1976)

    Article  Google Scholar 

  • Na, S., Sun, W.: Computational thermomechanics of crystalline rock, Part I: a combined multi-phase-field/crystal plasticity approach for single crystal simulations. Comput. Method Appl. Mater. 338, 657–691 (2018)

    Article  Google Scholar 

  • Nguyen, T., Le, A.: Simultaneous gas and water flow in a damage-susceptible bedded argillaceous rock. Can. Geotech. J. 52(1), 18–32 (2014)

    Article  Google Scholar 

  • Nguyen, V.P., Lian, H., Rabczuk, T., Bordas, S.: Modelling hydraulic fractures in porous media using flow cohesive interface elements. Eng. Geol. 225(8), 68–82 (2017)

    Article  Google Scholar 

  • Olivella, S., Alonso, E.E.: Gas flow through clay barriers. Geotechnique 58(3), 157–176 (2008)

    Article  Google Scholar 

  • Parker, J., Lenhard, R.: A model for hysteretic constitutive relations governing multiphase flow: 1. Saturation-pressure relations. Water Resour. Res. 23(12), 2187–2196 (1987)

    Article  Google Scholar 

  • Qi, S., Vanapalli, S.K.: Simulating hydraulic and mechanical responses of unsaturated expansive soil slope to rainfall: Case Study. Int. J. Geomech. 18(6), 05018002 (2018)

    Article  Google Scholar 

  • Rodwell, W.R., Harris, A.W., Horseman, S.T., Lalieux, P., Muller, W., Amaya, L.O.,Pruess, K.: Gas migration and twophase flow through engineered and geological barriers for a deep repository for radioactive waste. Nuclear Energy Agency (1999)

  • Salimzadeh, S., Khalili, N.: A three-phase XFEM model for hydraulic fracturing with cohesive crack propagation. Comput. Geotech. 69, 82–92 (2015)

    Article  Google Scholar 

  • Sánchez, M., Gens, A., Villar, M.V., Olivella, S.: Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils. Int. J. Geomech. 16(6), D4016015 (2016)

    Article  Google Scholar 

  • Santillán, D., Juanes, R., Cueto-Felgueroso, L.: Phase field model of fluid-driven fracture in elastic media: immersed-fracture formulation and validation with analytical solutions. J. Geophys. Res. Solid Earth 122(4), 2565–2589 (2017)

    Article  Google Scholar 

  • Santillán, D., Juanes, R., Cueto-Felgueroso, L.: Phase-field model of hydraulic fracturing in poroelastic media: fracture propagation, arrest and branching under fluid injection and extraction. J. Geophys. Res. Solid Earth 123(3), 2127–2155 (2018)

    Article  Google Scholar 

  • Shin, H., Santamarina, J.: Desiccation cracks in saturated fine-grained soils: particle-level phenomena and effective-stress analysis. Géotechnique 61(11), 961 (2011)

    Article  Google Scholar 

  • Snow, D.T.: Anisotropie permeability of fractured media. Water Resour. Res. 5(6), 1273–1289 (1969)

    Article  Google Scholar 

  • Song, X., Ye, M., Wang, K.: Strain localization in a solid-water-air system with random heterogeneity via stabilized mixed finite elements. Int. J. Numer. Methods Eng. 112(13), 1926–1950 (2017)

    Article  Google Scholar 

  • Spiteri, E.J., Juanes, R.: Impact of relative permeability hysteresis on the numerical simulation of WAG injection. J. Petrol. Sci. Eng. 50(2), 115–139 (2006)

    Article  Google Scholar 

  • Tamayo-Mas, E., Harrington, J., Shao, H., Dagher, E., Lee, J., Kim, K., Rutqvist, J., Lai, S., Chittenden, N., Wang, Y.: Numerical modelling of gas flow in a compact clay barrier for DECOVALEX-2019. In: Proceeding of the 2nd international discrete fracture network engineering conference, Seattle, Washington, USA, 20–22 June 2018, pp ARMA-DFNE-18-0623. ARMA (2018)

  • Taron, J., Elsworth, D.: Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 46(5), 855–864 (2009)

    Article  Google Scholar 

  • Taron, J., Elsworth, D., Min, K.-B.: Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media. Int. J. Rock Mech. Min. Sci. 46(5), 842–854 (2009)

    Article  Google Scholar 

  • van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  • Wang, J.J., Zhu, J.G., Chiu, C.F., Zhang, H.: Experimental study on fracture toughness and tensile strength of a clay. Eng. Geol. 94(1–2), 65–75 (2007)

    Article  Google Scholar 

  • Wheeler, M.F., Wick, T., Lee, S.: IPACS: integrated phase-field advanced crack propagation simulator. An adaptive, parallel, physics-based-discretization phase-field framework for fracture propagation in porous media. Comput. Method Appl. Mater. 367, 113124 (2020)

    Article  Google Scholar 

  • White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Method Appl. Mater. 197(49–50), 4353–4366 (2008)

    Article  Google Scholar 

  • Wilson, Z.A., Borden, M.J., Landis, C.M.: A phase-field model for fracture in piezoelectric ceramics. Int. J. Fract. 183(2), 135–153 (2013)

    Article  Google Scholar 

  • Wiseall, A., Cuss, R., Graham, C., Harrington, J.: The visualization of flow paths in experimental studies of clay-rich materials. Min. Mag. 79(6), 1335–1342 (2015)

    Article  Google Scholar 

  • Xu, W.J., Shao, H., Hesser, J., Wang, W., Schuster, K., Kolditz, O.: Coupled multiphase flow and elasto-plastic modelling of in-situ gas injection experiments in saturated claystone (Mont Terri Rock Laboratory). Eng. Geol. 157, 55–68 (2013)

    Article  Google Scholar 

  • Xu, L., Ye, W.M., Ye, B., Chen, B., Chen, Y.G., Cui, Y.J.: Investigation on gas migration in saturated materials with low permeability. Eng. Geol. 197, 94–102 (2015)

    Article  Google Scholar 

  • Xu, L., Ye, W.M., Chen, B., Chen, Y.G., Cui, Y.J.: Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials. Eng. Geol. 213, 46–54 (2016)

    Article  Google Scholar 

  • Xu, L., Ye, W., Chen, Y., Chen, B., Cui, Y.: A new approach for determination of gas breakthrough in saturated materials with low permeability. Eng. Geol. 241, 121–131 (2018)

    Article  Google Scholar 

  • Ye, W.M., Xu, L., Chen, B., Chen, Y.G., Ye, B., Cui, Y.J.: An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite. Eng. Geol. 169, 124–132 (2014)

    Article  Google Scholar 

  • Yin, P., Vanapalli, S.K.: Model for predicting tensile strength of unsaturated cohesionless soils. Can. Geotech. J. 55(9), 1313–1333 (2018)

    Article  Google Scholar 

  • Zheng, L., Rutqvist, J., Xu, H., Kim, K., Voltolini, M., Cao, X.: Investigation of coupled processes and impact of high temperature limits in argillite rock: FY17 Progress. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (2017)

    Google Scholar 

  • Zhou, S., Zhuang, X., Rabczuk, T.: A phase-field modeling approach of fracture propagation in poroelastic media. Eng. Geol. 240, 189–203 (2018)

    Article  Google Scholar 

  • Zhou, S., Zhuang, X., Rabczuk, T.: Phase field method for quasi-static hydro-fracture in porous media under stress boundary condition considering the effect of initial stress field. Theor. Appl. Fract. Mech. 107, 102523 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), the China Scholarship Council and the University of Ottawa. Moreover, the authors extend their appreciations to CMC Microsystems that provides the computational resources for this study.

Funding

The authors are grateful to the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), the China Scholarship Council and the University of Ottawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamadou Fall.

Ethics declarations

Conflict of interest

There are no potential conflicts of interests and competing interests.

Availability of Data and Material

All data, models, materials and code generated or used during the study appear in the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, G., Fall, M. A Thermodynamically Consistent Phase Field Model for Gas Transport in Saturated Bentonite Accounting for Initial Stress State. Transp Porous Med 137, 157–194 (2021). https://doi.org/10.1007/s11242-021-01555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01555-9

Keywords

Navigation